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Abstract Exploratory data analysis of a high-
resolution (hook-by-hook), 6-year time series (1993–
98) of observed longline catch data for tunas was
used to investigate fine-scale spatial patterns along
individual sets that may be indicative of social
behaviour (i.e., schooling) and/or the response of
individual fish to favourable extrinsic conditions
(i.e., aggregation). Methods of spatial data analysis
(i.e., nearest neighbour analysis) that have previously
been applied in various other sciences (e.g., forestry
and astronomy) were used. Results indicate strong
clustering of individual tunas at characteristic scales
within the set. Mean Nearest Neighbour Distances
(NNDs) were between 100 and 200 m, compared
with NNDs of 200–700 m predicted by a hetero-
geneous Poisson process on the same spatial domain.
The results suggest that these adult tunas were either
schooling or aggregating at the time of capture; this
may therefore be related either to social behaviour
or to sub-mesoscale oceanographic features. An
aggregation index was derived from the NNDs,

giving a classification method that may be used for
similar data and the development of empirical
models attempting to relate patterns in fish catch
distributions to environmental variables. The success
of such models will ultimately depend on elucidating
the ecological processes reflected in oceanographic
features at biologically meaningful spatial scales.

Keywords tunas; schooling; aggregation;
longline; nearest neighbour distance

INTRODUCTION

Tunas are not randomly distributed throughout New
Zealand waters all year round. The largest scale at
which this is apparent can be inferred from the areas
where fishers have come to target their effort (Fig.
1). Sharp (1978) estimated that if yellowfin tuna
(Thunnus albacares) in the eastern tropical Pacific
were truly uniformly distributed there would only be
one 10 kg fish per 2.8 km2 of ocean: “they would be
so rarely encountered as to be virtually non-existent”.
Some species of tuna are normally found in
association with many other conspecifics e.g.,
skipjack Katsuwonus pelamis (Bayliff 1988; Hilborn
1991), yellowfin (Klimley & Holloway 1999), and
young albacore Thunnus alalunga (Laurs et al.
1984), whereas others are thought to be solitary, at
least when not forming spawning aggregations
(Winkler et al. 1983) e.g., older albacore, bigeye
(Thunnus obesus), and adult northern and southern
bluefin (Thunnus thynnus and Thunnus maccoyii
respectively). The degree of association between
conspecifics is of great relevance to fisheries, as it
will clearly determine gear type as well as the timing
and location of effort. In New Zealand tuna fisheries,
schools of skipjack and young albacore are targeted
with seine nets and trolling gear respectively,
whereas adult southern bluefin, bigeye and yellowfin
are targeted by surface longlines.

Various terms are used in the behavioural ecology
and fisheries literature to describe non-uniform or
apparently non-random spatial patterns: schooling,
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Fig. 1 Locations of observed
surface longline sets in New
Zealand waters 1993–98, targeting
A, southern bluefin Thunnus
maccoyii (STN) and B, bigeye
Thunnus obesus (BIG).
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shoaling, clustering, aggregating, and congregating
are all terms that have been deployed, often
interchangeably. These words may describe similar
patterns but it is useful to let them have different
meanings, to distinguish the different causes that can
have the same effect. The spatial patterns observed
in fish distributions and the degree of association
among conspecifics are determined by a number of
factors. Fish may come together in order to minimise
predation risk or to maximise encounter rates with
prey or potential mates (Pitcher & Parrish 1993).
This bio-social attraction is best considered as
schooling or shoaling. Individuals may also come
together as a direct response to extrinsic environ-
mental conditions. Such behaviour is more generally
termed aggregation. Individuals are considered to be
acting independently of each other but responding
in a similar way to some external factor or combi-
nation of factors, e.g., temperature, visibility, prey
density etc. The ways in which marine predators
respond to their environment are likely to be scale-
dependent, and if variability in population density
has a characteristic spatial scale, subsequent research
to determine the conditions favouring aggregation
can focus on this scale (Schneider 1994). The
purpose of the analysis described in this paper was
to investigate spatial patterns in longline catch data
down to the finest scale possible. These patterns are
likely to result from schooling and/or aggregation.

Where point events of interest occur completely
at random within a sample space, this can be formal-
ly described as a Poisson process: the presence or
absence of an event at a particular location is not
influenced by any other event, and if the process is
homogeneous, no part of the sample domain is any
more likely to contain point events than another. A
heterogeneous Poisson process allows for such
variation, but the events themselves are still
independent. Such processes provide a base against
which to compare other processes where either
clustering or inhibition of events are thought to occur
(Cox et al. 2000). The approach taken to identify the
characteristic scales of spatial patterns in these data
was to measure the distances between individual fish
in the observed catch data, and to compare the
frequency distributions of these distances with the
distributions that result from a heterogeneous
Poisson process. If the fish are randomly distributed
along the set, then the set scale (up to 150 km) is the
finest scale at which they can be considered
aggregated, and the targeting of research and fishing
effort must focus on this or larger scales. But if they
are aggregated within the scale of the set we must

consider individual behaviour and the environmental
heterogeneity that may exist at these scales and focus
more detailed ecological and oceanographic investi-
gations accordingly. It may then become possible to
use such knowledge for monitoring and prediction
in the fishery.

DATA ANALYSIS

Observed longline catch data

Under the New Zealand Ministry of Fisheries
(MFish) Observer Programme, an observer is placed
on board all visiting foreign licensed surface longline
vessels and also a percentage of domestic licensed
vessels. Vessels formally target large adult tunas of
two species: southern bluefin (STN) and bigeye
(BIG). Albacore (ALB) and yellowfin (YFN) are not
formally targeted but are a significant and saleable
bycatch. Surface longline fishing vessels follow a
general pattern of operation over a 24 h period.
Larger vessels set the fishing gear in the early hours
of the morning to soak the baits during the hours
preceding dawn. This operation usually requires 4–
8 h and may be followed by 4–5 h of waiting before
the gear is retrieved, although longer lines may be
retrieved following a shorter waiting time. The catch
is processed during the next 12 h. The whole
operation is quicker for the smaller vessels of the
domestic fleet. A large vessel will set up to 150 km
of longline; smaller vessels set 40–80 km of line.
From the longline, 2500–3500 snood lines are
suspended, each with a single baited hook. For
scientific observers, emphasis is placed on getting
good information on catch, rather than on the setting
operation. The main aspects of the setting operation
are nevertheless recorded, including start and finish
times and positions, the number of hooks, length of
line set, vessel speed, line feeder speed, distance
between marker buoys, number of baskets, and basic
weather information. At the start and finish of the
haul, and at hourly intervals throughout, time and
position and basic weather information are recorded.
As each specimen is landed on deck, the time is
recorded and the specimen identified, weighed,
measured and sexed.

All the data gathered by the observers is entered
into the MFish database held at National Institute of
Water and Atmospheric Research (NIWA)
Wellington. For this study, fields of interest were
extracted from the database and the positions of
individual fish were calculated as described below.
ASCII files were generated detailing this
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information, and the spatial data analysis was then
carried out. (1) An array representing all hooks is
constructed with blank position and time details. (2)
The first hook is assigned the start-of-haul position
and time, and the last hook is assigned the end-of-
haul position. (3) Times are calculated for all other
hooks, assuming a constant speed while hauling. (4)
Hooks closest in time to the hourly haul records are
flagged. (5) Between each hook flagged with an
hourly haul position, the position of each intervening
hook is interpolated by great circle path navigation,
using the time assigned. (6) Each recorded specimen
is placed on the hook closest to its recorded landing
time; if that hook is already occupied, the specimen
is placed on the nearest unoccupied hook.

Nominal catch-per-unit-effort (CPUE)

CPUE for surface longline fisheries is nominally
defined as the number of fish caught per thousand
hooks. Detailed analysis of individual longline sets
shows that even after deliberate targeting by
experienced fishers, CPUE is still an over-dispersed
quantity, i.e., variance is greater than the mean (Fig.
2). We can therefore view CPUE for tunas as being
the result of a heterogeneous Poisson process
whereby different areas within the larger fishing area
identified by the skippers are more likely to contain
more fish, but where the occurrence of each indi-
vidual is independent of the occurrence of another.
Implicitly, the scale of such aggregation is that of the
longline set or larger. If no aggregations were
apparent at smaller scales, we would conclude that
fishers are targeting effort as efficiently as possible,
and that the finest scale on which tunas may be
considered aggregated is that of the set itself.

There are many factors that can determine the
likelihood of a particular hook catching a fish,
including depth of the hook, bait type, and of course
the timing and location of effort. Fish behaviour is
also a factor (see Ferno & Olsen 1994); not all fish
that are present will come close enough to detect bait,
not all fish that detect bait will bite it, and not all fish
that do bite bait will get caught on the hook. Nominal
CPUE is therefore only a gross measure of relative
abundance that may confound the effects of
contributing factors. For the purpose of the analysis
presented here, no estimate has been made of the
effectiveness of fishing effort. We have not esti-
mated or corrected for these potential errors and
therefore implicitly assume that all hooks have the
same likelihood of catching a subject should one be
present at that point during the fishing period.

Set-scale probabilities

Fishing is as much a non-random method of sampling
as the skipper can make it. For target species, the
probability of catching at least one fish represents the
extent of fishers’ prior knowledge, i.e., how well they
are targeting large (set scale) areas preferred by the fish.
For all species, the probability of catching more than
one subject, and the conditional probability of catching
an additional subject having already caught a first, are
preliminary measures of fish aggregation on the scale
of the set. We implicitly assume that the skill of the
skippers is equal.

Generation of simulated data

To compare the spatial patterns apparent in the real
catch data with what might be expected from a
heterogeneous Poisson process, simulated data were
generated by Monte Carlo simulation. The CPUE for
the subject species on that set was used to determine
the probability of each hook catching a fish; this
probability was then compared with a random
number to determine whether or not that hook
catches a fish. Nearest neighbour distances were then
measured as for the real data (see next section). This
was repeated 1000 times for each set. In the gener-
ation of simulated data the geometry of the set was
preserved so that the permitted values of nearest
neighbour distances were the same as for the real
data (Fig. 3). Also, the CPUE for each individual set
was used in preference to the pooled mean for the
fishery, bearing in mind that “…what is considered
to be a clustered pattern with the assumption of
homogeneity in force [i.e., using the pooled mean]
could also be the result of heterogeneity” (Ripley
1981). This reduces our chances of believing that
there is clustering at spatial scales smaller than the
set length, when the effect is in fact caused by
variation in CPUE at spatial scales equal to or larger
than the set lengths.

Aggregation index

For each longline set that caught more than one
subject, the distances between each subject and all
the other subjects were calculated by spherical
trigonometry, i.e., calculating the Great Circle Path
between the two locations. The Nearest Neighbour
Distance (NND) is the distance from one subject to
the nearest other and for each set there are as many
NNDs as there are subjects caught. In order to permit
identification and classification of sets possibly
containing tuna schools and/or aggregations an
Aggregation Index (AI) was defined, following
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Fig. 2 Frequency distributions of
nominal catch-per-unit-effort
(catch per 1000 hooks) for
observed surface longline sets in
New Zealand waters 1993–98, by
subject species, target species and
area. (ALB, albacore; BIG, bigeye;
STN, southern bluefin; YFN,
yellowfin.)

Clark & Evans (1954): AI = 1 – (mean NND/mean
RanNND), where RanNND is the mean NND for the
simulated data. AI values fall between –1 and 1, with

positive values indicating schooling/aggregation,
zero indicating a random distribution, and negative
values indicating repulsion.
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RESULTS

Frequency histograms of nominal CPUE for the data
used in this analysis are presented in Fig. 2. For the
BIG fishery, which takes place in the warm waters
off the north-eastern region (Fig. 1), nominal CPUE
was most frequently zero, with occasional catches
up to 10 fish per 1000 hooks. For the STN fishery
in northern waters, nominal CPUE was also most
frequently low (<2), but in 10% of instances nominal
CPUE was at least 10, and in a few instances was
higher than 20. In southern waters, nominal CPUE
for STN was rarely greater than 10, but there were
fewer instances of nominal CPUE being zero, and
more instances where nominal CPUE was greater
than 2. In southern waters, nominal CPUE for ALB
was most frequently zero and always low. In
northern waters however, nominal CPUE for ALB
was rarely zero and could be extremely high (>50)
in both the STN and the BIG fisheries. Nominal
CPUE for YFN was most frequently zero, but was
often greater than 0 and less than 20.

The set-scale probabilities of catching the formal
target species (i.e., STN or BIG) and other subject
species (e.g., ALB and YFN) are given in Table 1.
The proportion of sets that caught at least 1 (P(fish
> 0)) and more than 1 subject (P (fish > 1)) are
detailed, followed by the conditional probability of
catching an additional subject having already caught
a first (P(fish2 | fish1)). It is apparent in these data
that fishers were quite effective at targeting STN

(P(STN) � 80–90%) and that these were not usually
found alone (P(STN2 | STN1) � 90%). When BIG
were targeted, the probability of catching at least 1
target was much lower (P(BIG) � 60%) and there
was only a 50% chance of catching another BIG on
the same set. The probability of catching at least 1
YFN was the same as for the formal target species
BIG (P(YFN) � P(BIG) � 60%), but it was more
likely that more than 1 YFN would be caught on the
same set (P(YFN2 | YFN1) � 70%). ALB were
apparently ubiquitous in both the BIG and STN
fisheries off the North Island (P(ALB) � 100%;
P(ALB2 | ALB1) � 100%). This provides fishers
with their basic income, which is then supplemented
by less frequent but more lucrative catches of the
target species (T. Murray pers. comm.). ALB were
caught less frequently in the longline fisheries off the
South Island (P(ALB) � 40%), where they were
often caught on their own (P(ALB2 | ALB1) = 50%).
There are separate fisheries for younger albacore in
surface waters that are able to target discrete schools
using trolling gear.

For each species, NND calculations were carried
out for sets that caught more than one subject; the
mean number of fish per set in this subsample is
listed. The NNDs are generally c. 100 m, which is
the same order of magnitude but 25–50% shorter
than the NNDs resulting from the Poisson process
(RanNND). The frequency distributions for the real
and simulated data are presented in Fig. 4. In all

Fig. 3 Schematic representation
of the calculation of distances
between fish. Curved line represents
the set, stars represent the locations
of fish, and small arrows represent
the distances measured between
them. Left, representing an actual
set, four fish are clustered. Right,
representing the results of three
Monte Carlo simulations, the
geometry of the set is preserved and
the actual catch-per-unit-effort for
that set is used to obtain a similar
number of subjects distributed at
random along the line. Nearest
neighbour distances (NNDs; small
arrows) are then measured.
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instances the NNDs are skewed to the shorter
distances, mostly less than 200 m. If the subjects
were distributed randomly along the set, as they are
in the simulated data, the NNDs would be more
variable and generally greater. The AI was calculated
for each set and the mean AI for each fishery is listed
in Table 1. The cumulative frequency distributions
of AIs for all individual sets are presented in Fig. 5.
Comparing the cumulative frequency distributions
for the real AIs with those calculated from Monte
Carlo simulations on the same set, we see that while
the AIs for the simulated data are normally
distributed about zero in all instances, the AIs for the
real data are positively skewed relative to these, and
are normally distributed about peaks at 0.4–0.7.

DISCUSSION

For spatial point processes (as opposed to distributed
continuous variables, for which geostatistical methods
might be more suitable—see Pelletier & Parma 1994)
the Poisson process plays a role corresponding to that
of the normal distribution within probability distri-
butions (Cox et al. 2000). Here a heterogeneous
Poisson process was used as a base against which to
compare the spatial properties of longline catch data
for tunas, to establish whether and at what scales
clustering of fish along sets was apparent. The Poisson
process was chosen because it is the most obvious way
to generate stochastic point events within a limited 2-
dimensional space, and variable expectations obtained
from measured values of CPUE could be used to
prevent the variability of CPUE among sets con-
founding the interpretation of results.

Nearest neighbour distances (NNDs) were calcu-
lated for real and simulated data and the resulting
frequency distributions were compared. An aggre-
gation index was defined that is identical to that of
Clark & Evans (1954) (i.e., the ratio of mean NNDs
for the real data to the expected mean NNDs for a
random process) except for the scaling (–1 to 1)
introduced here by subtracting the NND ratio from
unity. In the real data, NNDs are much shorter than
those predicted by a Poisson process with the same
heterogeneity as nominal CPUE. The NNDs, being
on such a small scale (100–200 m) are probably
determined by individual behaviour in relation to
conspecifics and may therefore be indicative of
schooling. However, because of the fairly long soak
time of longline sets and the high swimming speeds
of tunas it is not possible to firmly establish that
schooling is really the mechanism underlyingT
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Fig. 4 Frequency distributions
for nearest neighbour distances
(NNDs) by subject species, target
species and area. (Closed bars, real
data; open bars, simulated data.
ALB, albacore; BIG, bigeye; STN,
southern bluefin; YFN, yellowfin.)
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Fig. 5 Cumulative frequency
distributions for aggregation index
(AI) by subject species, target
species and area. (Solid line, real
data; dotted line, simulated data.
ALB, albacore; BIG: bigeye; STN,
southern bluefin; YFN, yellowfin.)
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clustered NNDs; it is possible that even adjacent
hooks were taken several hours apart, which would
only imply aggregation, hence our use of the term
“aggregation index”. More exact information on the
times that fish were hooked would resolve this
potential error of interpretation. This information
may be obtained by using a Time Depth Recorder
(TDR) on each snood line. However, although
deployment of TDRs is practicable for experimental
fishing it is unlikely to be so for commercial
operations. There is an obvious trade-off between
data quality and sample size when comparing data
from experimental and commercial fishing; in this
study we have considered >4 million hooks and
while the use of TDRs would undoubtedly have
added to the information content of the data, the cost
of deployment would have been prohibitive.

We should recall that NND analysis has only
been carried out for sets where >1 subject was
caught. The results must therefore be interpreted
alongside the set-scale probabilities for catching 1
and >1 fish. With this in mind we might only
consider tunas to be aggregated where both P(fish
> 1) and P(fish2Áfish1) > 0.5, i.e. where there is
more chance of catching >1 rather than just 1 fish
and the presence of 1 fish implies an increased
chance of catching another. These criteria are only
met in the fisheries for STN off both the North and
South Island and ALB and YFN off the North
Island. We could conclude that YFN is less
abundant and/or aggregated and that BIG caught off
the North Island and ALB caught off the South
Island are quite solitary.

The motivations for aggregations of individuals
or schools (i.e., the environmental properties attrac-
tive to tuna) have not been determined in this study.
Their interpretation in relation to the metrics derived
here will not be straightforward. The aggregations
may be a direct response to local prey concentrations,
which in turn may be the result of local ocean
dynamics and enrichment processes at scales less
than 100 km, i.e., sub-mesoscale. But the distribution
of tuna prey is itself patchy and is not likely to be
phase-locked with production at lower trophic levels.
Although tunas are more highly mobile than their
prey they have to cross comparatively empty space
in between prey encounters and would be more likely
to take a baited hook during this time (Bertrand et
al. 2002b). It is therefore possible that tunas are
conducting non-trophic migrations through New
Zealand waters and that proximate environmental
conditions are to be endured whether or not they are
especially favourable.

Data have only been considered in the horizontal
dimension but longline fishing gear is targeted at
tunas with different depth preferences. Longlines are
set deeper for BIG, therefore they are shorter for the
same gear/vessel that might previously have been
fishing for STN. This analysis has been stratified by
target species and area for this reason. Considering
some hypothetical sources of error, clustering might
be apparent along a fishing line that was only
effectively targeting tuna habitat with e.g., the
deepest hooks. The spacing of such clusters would
be comparable to the distance between surface floats.
Alternatively, hooks at intermediate depth might be
most effective; in this instance there might be two
clusters in between floats. The average distance
between floats is c. 500 m. The NNDs are shorter
than this and so neither pattern of effective effort (see
Bigelow et al. 2002) is supported by the NNDs
measured in the data. The behaviour of fish that have
been caught might modify the potential for nearby
hooks to catch fish; such a tendency would, however,
make aggregations less, rather than more likely.
Similarly, a school of fish might swim along the line
and so catches might then appear to be randomly
distributed. Such behaviour would indeed result in
spatial patterns analagous to those produced by the
Poisson process; AI would therefore be zero. The
presence of caught species other than tuna would
interfere with the data in that a hook that has already
been taken by a shark, for example, would no longer
be available to a tuna. However, although the
majority of the total fish catch on a longline is
bycatch, it is also true that the majority of hooks do
not catch anything at all (Francis 1999). It is there-
fore unlikely that there is any systematic bias in the
data due to bycatch. All possible errors of interpre-
tation that we have considered would introduce a
conservative bias to the data, i.e., fish would be more
randomly distributed along the line rather than more
aggregated.

Issues concerning spatial and temporal scale arise
frequently in discussions on the behaviour and spatial
dynamics of tunas (Hunter et al. 1986). Tagging studies
often report either long-distance movements or fine-
scale behaviour (Kirby 2001), but rarely investigate
behaviour in relation to conspecifics. We struggle with
how to use knowledge of physiology and behaviour
to understand movement patterns and population
dynamics. Modelling studies have tried to address
the conditions under which school formation may
occur, based on food intake requirements (Dagorn
et al. 1995), swimming efficiency (Stocker 1999)
and social interaction (Dagorn & Freon 1999) and
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recent work illustrates how we can study the conditions
favouring aggregation (Bertrand et al. 2002a,b).
Further work could assess in more detail the factors
motivating tuna behaviour and spatial dynamics in
New Zealand waters. Specifically, the trophic
dynamics of fishing grounds should be investigated
(e.g., Roger 1994; Young et al. 1996a,b, 1997;
Bertrand et al. 2002a,b) in relation to observations of
surface oceanography (e.g., Uddstrom & Oien 1999;
McClatchie et al. 2001). Experimental fishing, with
simultaneous measurement of in situ physical and
ecological variables (e.g., Bertrand et al. 2002a,b)
would start to address cause and effect relationships
determining the spatial distribution of tunas and
therefore variability in CPUE. Concurrently, more
comprehensive analysis of historical data sets should
be undertaken to estimate fishing depths and effective
effort in comparison with oceanographic data (e.g.,
Bigelow et al. 2002) and to explore the spatial patterns
and interactions among subject, target, and bycatch
species. It would be interesting to establish whether
or not the schools/aggregations identified in this
analysis are themselves aggregated at larger scales that
are still smaller than the area sampled by the longline.
By identifying the characteristic scales of these patterns
it might be possible to distinguish between the two
processes. This in turn is likely to enable better
forecasting of fish distributions in relation to
oceanographic variability.

CONCLUSIONS

CPUE for tunas in surface longline fisheries in New
Zealand waters is highly variable to the point of
being statistically overdispersed. It varies greatly
among fishing sets even after targeting of key species
by experienced fishers. A partial explanation for this
is that tunas are not randomly distributed but are very
patchily distributed, forming schools/aggregations
with nearest neighbour distances of c. 100 m, which
may themselves be aggregated at scales that are yet
to be determined.

ACKNOWLEDGMENTS

This research was carried out under NIWA’s Remote
Sensing for Fisheries Project, with funding from the
Public Good Science Fund. Richard Murphy wrote the
original code for analysing these data, Brian Bull
provided initial advice on statistical analysis, Talbot
Murray advised on various aspects of the fisheries, and
the manuscript benefited greatly from the critical attention

of Laurent Dagorn, Shelton Harley, Sean Lawrence, Mark
Maunder, Graham Ruxton, David Schneider, and two
anonymous referees. We also acknowledge the
contribution of the scientific observers who obtained
these data at sea and the fishing companies and crew who
supported their work.

REFERENCES

Bayliff, W. H. 1988: Integrity of schools of Skipjack
tuna, Katsuwonus pelamis, in the Eastern Pacific
Ocean, as determined from tagging data. Fishery
Bulletin 86: 631–643.

Bertrand, A.; Bard, F.-X.; Josse E. 2002a: Tuna food
habits related to the micronekton distribution in
French Polynesia. Marine Biology 140: 1023–
1037.

Bertrand, A.; Josse E.; Bach, P.; Gros, P.; Dagorn, L.
2002b: Hydrological and trophic characteristics
of tuna habitat: consequences on tuna distribution
and longline catchability. Canadian Journal of
Fisheries and Aquatic Sciences 59: 1002–1013.

Bigelow, K. A.; Hampton, J.; Miyabe, N. 2002:
Application of a habitat-based model to estimate
effective longline fishing effort and relative
abundance of Pacific bigeye tuna (Thunnus
obesus). Fisheries Oceanography 11: 143–155.

Clark, P. J.; Evans, F. C. 1954: Distance to nearest neighbor
as a measure of spatial relationships in populations.
Ecology 35: 445–453.

Cox, D. R.; Isham, I.; Northrop, P. 2000: Statistical
modelling and analysis of spatial patterns. In:
Law, R.; Metz, J. A. J.; Dieckmann, U. ed. The
geometry of ecological interactions: simplifying
spatial complexity. Cambridge, Cambridge
University Press. 450 p.

Dagorn, L.; Fréon, P. 1999: Tropical tuna associated with
floating objects: a simulation study of the meeting
point hypothesis. Canadian Journal of Fisheries
and Aquatic Sciences 56: 984–993.

Dagorn, L.; Petit, M.; Stretta, J-M.; Bernadet, X.; Romos,
A. G. 1995: Toward a simulated eco-ethology of
tropical tunas. Scientia Marina 59: 335–346.

Ferno, A.; Olsen, S. (ed.) 1994: Marine fish behaviour in
capture and abundance estimation. Oxford, Fishing
News Books. 221 p.

Francis, M. P. 1999: Fish bycatch in New Zealand tuna
longline fisheries. NIWA Technical Report 55.
Wellington, National Institute of Water and
Atmospheric Research Limited. 70 p.



644 New Zealand Journal of Marine and Freshwater Research, 2003, Vol. 37

Hilborn, R. 1991: Modeling the stability of fish schools—
exchange of individual fish between schools of
skipjack tuna (Katsuwonus pelamis). Canadian
Journal of Fisheries and Aquatic Sciences 48:
1081–1091.

Hunter, J. R.; Argue, A. W.; Bayliff, W. H.; Dizon, A. E.;
Fonteneau, A.; Goodman, D.; Seckel, G. R. 1986:
The dynamics of tuna movements: an evaluation
of past and future research. FAO Fisheries
Technical Paper 277. 78 p.

Kirby, D. S. 2001: On the integrated study of tuna
behaviour and spatial dynamics: tagging and
modelling as complementary tools. In: Sibert, J.
R.; Nielsen, J. ed. Electronic tagging and tracking
in marine fisheries. Dordrecht, Kluwer Academic
Publishers. Pp. 407–420.

Klimley, A. P.; Holloway, C. F. 1999: School fidelity and
homing synchronicity of yellowfin tuna, Thunnus
albacares. Marine Biology 133: 307–317.

Laurs, R. M.; Fiedler, P. C.; Montgomery, D. R. 1984:
Albacore tuna catch distributions relative to
environmental features observed from satellites.
Deep Sea Research 31: 1085–1099.

McClatchie, S.; Coombs, R. F.; Macaulay, G. 2001: Are
there more fish in the Front? Water & Atmosphere
9(1): 13–16.

Pelletier, D.; Parma, A. M. 1994: Spatial distribution of
Pacific halibut (Hippoglossus stenolepis): an
application of geostatistics to longline survey data.
Canadian Journal of Fisheries and Aquatic
Science 51: 1506–1518.

Pitcher, T. J.; Parrish, J. K. 1993: The functions of shoaling
behaviour. In: Pitcher, T. J. ed. The behaviour of
teleost f’ishes, 2nd ed. London, Chapman & Hall.
Pp. 363–439.

Ripley, B. D. 1981: Spatial statistics. Chichester, John
Wiley & Sons. 264 p.

Roger, C. 1994: The plankton of the tropical western
Indian Ocean as a biomass indirectly supporting
surface tunas (yellowfin, Thunnus albacares and
skipjack, Katsuwonus pelamis). Environmental
Biology of Fishes 39: 161–172.

Schneider, D. C. 1994: The role of fluid dynamics in the
ecology of marine birds. Oceanography and
Marine Biology Annual Review 29: 487–521.

Sharp, G. D. 1978: Behavioral and physiological properties
of tuna and their effects on vulnerability to fishing
gear. In: Sharp, G. D.; Dizon, A. E. ed. The
physiological ecology of tunas. New York,
Academic Press. Pp. 397–450.

Stöcker, S. 1999: Models for tuna school formation.
Mathematical Biosciences 156: 167–190.

Uddstrom, M. J.; Oien, N. A. 1999: On the use of high-
resolution satellite data to describe the spatial and
temporal variability of sea surface temperatures
in the New Zealand region. Journal of Geophysical
Research C104(9): 20729–20751.

Winkler, M.; Sitko S. E.; Sund, P. N. 1983: Tunas—
nomads of the sea. Sea Frontiers 29: 51–56.

Young, J. W.; Bradford, R. W.; Lamb, T. D.; Lyne, V. D.
1996a: Biomass of zooplankton and micronekton
in the southern bluefin tuna fishing grounds off
eastern Tasmania, Australia. Marine Ecology
Progress Series 138: 1–14.

Young, J. W.; Lamb, T. D.; Bradford, R. W. 1996b:
Distribution and community structure of midwater
fishes in relation to the subtropical convergence
off eastern Tasmania, Australia. Marine Biology
126: 571–584.

Young, J. W.; Lamb, T. D.; Le, D.; Bradford, R. W.;
Whitelaw, A. W. 1997: Feeding ecology and
interannual variations in diet of southern bluefin
tuna, Thunnus maccoyii, in relation to coastal and
oceanic waters off eastern Tasmania, Australia.
Environmental Biology of Fishes 50: 275–291.


