

### **Ressources marines**

### Artisanal Tuna Data Workshop 11<sup>th</sup> – 14<sup>th</sup> November 2013

# Session 2 – Economic considerations for data collection









# **Overview – economic considerations**

- Macroeconomic considerations
  - Current macroeconomic understanding of artisanal fisheries
  - Data gaps
- Socioeconomic considerations
  - Current socioeconomic understanding of artisanal fisheries
  - Data gaps
- Microeconomic considerations
  - Current microeconomic understanding of artisanal fisheries
  - Data gaps
- Policy implications and data needs





## **Macroeconomic considerations**

#### What we know:

- Not a lot with certainty
- Artisanal fisheries are of significant economic importance
- Artisanal fisheries includes capture based: subsistence, coastal commercial (non-industrial) and freshwater fisheries
- They employ over 90% of the world's capture fishers and fish workers
- Small scale fisheries account for over half of fisheries total contribution to gross domestic product in the combined economies of the Pacific









**Ressources marines** 

## **Macroeconomic considerations**





### **Ressources marines**

# **Macroeconomic considerations**

#### Data gaps:

- Disaggregated economic data
- Total value (quantity and price) of domestic production
  - Subsistence
  - Traded
  - Value added
- Value of artisanal exports (ToT; BoP)
- Direct, indirect and induced effects of sports fishing based tourism
- Return on national infrastructure
  investments
  - FADs
  - Fishing centres / ice plants
  - Warf and market infrastructure



• Employment (formal and informal)









## **Example: Data to facilitate decision making**

**Objective:** Maximize economic value derived from the tuna resource

**Problem:** Potential trade off between industrial fishery development and artisanal fishery prosperity (or survival)

**Government Questions:** *What* are the current benefits that industrial and artisanal fisheries provide? *How* are these benefits realized? *What* is the cost-benefit of promoting one or the other?







### **Ressources marines**

## Example: Decision making framework ~ cost-benefit analysis ~

| INCREASING INDUSTRIAL TUNA FISHING |       |                       |       |  |
|------------------------------------|-------|-----------------------|-------|--|
| Benefits                           | Data? | Costs                 | Data? |  |
| License revenue                    | Yes   | Localised depletion   | Yes   |  |
| GDP                                | Yes   | Low resource rents    | Yes   |  |
| Employment                         | Yes   | Artisanal interaction | No    |  |
| Global food security               | Yes   |                       |       |  |

| PROTECTING ARTISANAL FISHERS |       |                        |       |  |
|------------------------------|-------|------------------------|-------|--|
| Benefits                     | Data? | Costs                  | Data? |  |
| Food security                | No    | Reduce license revenue | Yes   |  |
| Livelihoods                  | No    | Reduce GDP (?)         | Yes   |  |
| Employment                   | No    | Reduce employment      | Yes   |  |
| Trade                        | No    |                        |       |  |

2







## **Example: Conclusion**

Government decisions are often based on economic analysis, which is informed, in part, by data. Lack of awareness, understanding and availability of artisanal fishery data often results in undervaluation of this fishery and policy decisions that do not reflect its economic value.

# Data collection is critical to governments making good fisheries management decisions!





### **Ressources marines**

# **Socioeconomic considerations**

#### What we know:

- Pacific islanders eat a lot of fish (10kg < x < 150kg per capita per annum)
- Participation in fisheries is high food and income
- Fisheries have cultural and recreational value
- Artisanal fisheries are complex:
  - Multi gear
  - Multi purpose
  - Multi species
  - Geographically dispersed
  - Informal
- Uncertainty around the future productive capacity of coastal fisheries











### **Ressources marines**

# **Socioeconomic considerations**

### Data gaps:

- Disaggregated socioeconomic data
  - Fish consumption by species / fishery
  - Household income by species / fishery
  - Full / part time participation by fishery
- Consumer tastes / preferences reef / pelagic
- Health benefits combating NCDs; ciguatera









## **Example: Transferring fishing effort from reef to ocean**

**Objective:** Reduce fishing pressure on the reef via the deployment of FADs

**Problem:** Is this option socioeconomically viable?

**Government Questions:** *What* is the current status of the reef? *How* can fishing effort be reduced or transferred? *Are* FADs effective in achieving this?





### **Example: Consequences of no data**

Scenario 1: Reef is healthy – government assumes it isn't and deploys a network of FADs; wasted government funds.

Scenario 2: Reef is not healthy – government knows this and deploys a network of FADs; people don't have the means to access FAD or dietary preference for pelagics; wasted government funds

Scenario 3: Reef is not healthy – government knows this and deploys a network of FADs; FADs aren't working.





## **Example: Conclusion**

This is an example of a situation where a lack of socioeconomic (and ecosystem; economic) data from the fishery could result in the government making poor decisions that result in misallocation of resources

# Data collection is critical to governments making good fisheries management decisions!





### **Ressources marines**

## **Microeconomic considerations**

(CPI 2004 = 100)

#### What we know:

- Cost of fishing (fuel, inputs) is increasing
- Depending on the location, FADs are an effective means for improving artisanal fisher efficiency



#### Crude oil price vs Thai YFT and SJT purse seine price (USD)





## **Microeconomic considerations**







# Microeconomic considerations Trolling fuel consumption in Niue







### **Ressources marines**

# **Microeconomic considerations**

### Data gaps:

- Disaggregated catch and effort data:
  - FAD economics
  - Optimisation (e.g., gear)
- Market price and quantity
  - Time series
  - Price elasticity of demand/supply
  - Supply and demand interactions
- Production economic variables
  - Revenue
  - Variable costs
  - Fixed costs
  - Gross margin









## **Example: Policy to support artisanal fishers**

**Objective:** Support, through economic intervention, small scale fishers

**Problem:** Small scale fishers are not economically viable?

**Government Questions:** *What* is the typical value of catch? *Are* fishers profitable? *Can* economic intervention help?







### **Example: Consequences of no data**

Scenario 1: Fishers are not profitable – government assumes they are and does nothing; domestic production decline.

Scenario 2: Fishers are profitable – government assumes they aren't and subsidizes fuel; fishers increase profitability at tax payers expense

Scenario 3: Fishers are not profitable – government assumes they aren't and subsidizes fuel, but at levels that are too low; fishers still not profitable





## **Example: Conclusion**

This is an example of a situation where a lack of microeconomic data from the fishery could result in the government making poor decisions that result in misallocation of resources

# Data collection is critical to governments making good fisheries management decisions!





### **Ressources marines**

# **Policy implication and data needs**

### Macroeconomic:

- Need for informed policy
- Raise profile of artisanal fisheries
- Sectoral underinvestment
  - Infrastructure and development
  - Monitoring
  - Planning and management
- Underdeveloped
  marketing channels
- Investment analysis

### Socioeconomic:

- Need for greater understanding
- Disaggregation of:
  - Species consumption
  - Income source
  - Fishery participation
- Understand consumer
  tastes/preference in policy
  development
- Promote health benefits

### Microeconomic:

- Need for vessel economic modelling - production
- Understand market dynamics and impact of policy / development programs
- FAD economics
- Interactions with industrial fishery





### **Ressources marines**

# Thank you and discussion







