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ABSTRACT 34 

Exploratory data analysis of a high resolution (hook-by-hook), 6 yr time series (1993-35 

1998) of observed longline catch data for tunas was used to investigate fine-scale spatial 36 

patterns along individual sets that may be indicative of social behaviour (i.e. schooling) and/or 37 

the response of individual fish to favourable extrinsic conditions (i.e. aggregation). Methods 38 

of spatial data analysis (i.e. nearest neighbour analysis) that have previously been applied in 39 

various other sciences (e.g. forestry & astronomy) were used. Results indicate strong 40 

clustering of individual tunas at characteristic scales within the set. Mean Nearest Neighbour 41 

Distances (NNDs) were between 100 to 200 m, compared with 200 to 700 m predicted by a 42 

heterogeneous Poisson process on the same spatial domain. The results suggest that these 43 

adult tunas were either schooling or aggregating at the time of capture; this may therefore be 44 

related either to social behaviour or to sub-mesoscale oceanographic features. An Aggregation 45 

Index was derived from the NNDs, giving a classification method that may be used for similar 46 

data and the development of empirical models attempting to relate patterns in fish catch 47 

distributions to environmental variables. The success of such models will ultimately depend 48 

on elucidating the ecological processes reflected in oceanographic patterns at biologically 49 

meaningful spatial scales.  50 

51 
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INTRODUCTION 51 

Tunas are not randomly distributed throughout New Zealand waters all year round. 52 

The largest scale at which this is apparent can be inferred from the areas where fishers have 53 

come to target their effort (Fig. 1). Sharp (1978) estimated that if yellowfin tuna Thunnus 54 

albacares in the eastern tropical Pacific were truly uniformly distributed there would only be 55 

one 10 kg fish per 2.8 km2 of ocean: ‘they would be so rarely encountered as to be virtually 56 

non-existent.’ Some species of tuna are normally found in association with many other con-57 

specifics e.g. skipjack Katsuwonus pelamis (Bayliff 1988, Hilborn 1991), yellowfin (Klimley 58 

& Holloway 1999), and young albacore Thunnus alalunga (Laurs et al. 1984), while others 59 

are thought to be solitary, at least when not forming spawning aggregations (Winkler et al. 60 

1983) e.g. older albacore, bigeye Thunnus obesus and adult northern and southern bluefin 61 

(Thunnus thynnus and Thunnus macoyii respectively). The degree of association between con-62 

specifics is of great relevance to fisheries, as it will clearly determine gear type and/or the 63 

timing and location of effort. In New Zealand tuna fisheries, schools of skipjack and young 64 

albacore are targeted with seine nets and trolling gear respectively, while adult southern 65 

bluefin, bigeye and yellowfin are targeted by surface longlines.  66 

Various terms are used in the behavioural ecology and fisheries literature to describe 67 

non-uniform or apparently non-random spatial patterns: schooling, shoaling, clustering, 68 

aggregating and congregating are all terms that have been deployed, often inter-changeably. 69 

These words may describe similar patterns but it is useful to let them have different meanings, 70 

in order to distinguish the different causes that can have the same effect. The spatial patterns 71 

observed in fish distributions and the degree of association among con-specifics are 72 

determined by a number of factors. Fish may come together in order to minimise predation 73 

risk or to maximise encounter rates with prey or potential mates (Pitcher & Parrish 1993). 74 

This bio-social attraction is best considered as schooling or shoaling. Individuals may also 75 

come together as a direct response to extrinsic environmental conditions. Such behaviour is 76 
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more generally termed aggregation. Individuals are considered to be acting independently of 77 

each other but responding in a similar way to some external factor or combination of factors, 78 

e.g. temperature, visibility, prey density etc. The ways in which marine predators respond to 79 

their environment are likely to be scale-dependent, and if variability in population density has 80 

a characteristic spatial scale, subsequent research to determine the conditions favouring 81 

aggregation can focus on this scale (Schneider 1994). The purpose of the analysis described in 82 

this paper was to investigate spatial patterns in longline catch data down to the finest scale 83 

possible. These patterns are likely to result from schooling and/or aggregation.  84 

Where point events of interest occur completely at random within a sample space, this 85 

can be formally described as a Poisson process: the presence or absence of an event at a 86 

particular location is not influenced by any other event, and if the process is homogeneous, no 87 

part of the sample domain is any more likely to contain point events than another. A 88 

heterogeneous Poisson process allows for such variation, but the events themselves are still 89 

independent. Such processes provide a base against which to compare other processes where 90 

either clustering or inhibition of events are thought to occur (Cox et al. 2000). The approach 91 

taken to identify the characteristic scales of spatial patterns in these data was to measure the 92 

distances between individual fish in the observed catch data, and to compare the frequency 93 

distributions of these distances with the distributions that result from a heterogeneous Poisson 94 

process. If the fish are randomly distributed along the set, then the set scale (up to 150 km) is 95 

the finest scale at which they can be considered aggregated, and the targeting of research and 96 

fishing effort must focus on this or larger scales. But if they are aggregated within the scale of 97 

the set we must consider individual behaviour and the environmental heterogeneity that may 98 

exist at these scales and focus more detailed ecological and oceanographic investigations 99 

accordingly. It may then become possible to use such knowledge for monitoring and 100 

prediction in the fishery.  101 

 102 
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DATA ANALYSIS 103 

Observed longline catch data 104 

Under the New Zealand Ministry of Fisheries (MFish) Scientific Observer 105 

Programme, an observer is placed on board all visiting foreign licensed surface longline 106 

vessels and also a percentage of domestic licensed vessels. Vessels formally target large adult 107 

tunas of 2 species: Southern Bluefin (STN) and Bigeye (BIG). Albacore (ALB) and Yellowfin 108 

(YFN) are not formally targeted but are a significant and saleable bycatch. Surface longline 109 

fishing vessels follow a general pattern of operation over a 24 h period. Larger vessels set the 110 

fishing gear in the early hours of the morning to soak the baits during the hours preceding 111 

dawn. This operation usually requires 4 to 8 h and may be followed by 4 to 5 h of waiting 112 

before the gear is retrieved, although longer lines may be retrieved following a shorter waiting 113 

time. The catch is processed during the next 12 h. The whole operation is quicker for the 114 

smaller vessels of the domestic fleet. A large vessel will set up to 150 km of longline; smaller 115 

vessels set 40 to 80 km of line. From the longline, 2500 to 3500 snood lines are suspended, 116 

each with a single baited hook. For scientific observers, emphasis is placed on getting good 117 

information on catch, rather than on the setting operation. The main aspects of the setting 118 

operation are nevertheless recorded, including start and finish times and positions, the number 119 

of hooks, length of line set, vessel speed, line feeder speed, distance between marker buoys, 120 

number of baskets, and basic weather information. At the start and finish of the haul, and at 121 

hourly intervals throughout, time and position and basic weather information are recorded. As 122 

each specimen is landed on deck, the time is recorded and the specimen identified, weighed, 123 

measured and sexed.  124 

All the data gathered by the observers is entered into the MFish database held at 125 

NIWA Wellington. For this study, fields of interest were extracted from the database and the 126 
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positions of individual fish were calculated as described below. ASCII files were generated 127 

detailing this information, and the spatial data analysis was then carried out.  128 

1. An array representing all hooks is constructed with blank position and time details. 129 

2. The first hook is assigned the start-of-haul position and time, and the last hook is 130 

assigned the end-of-haul position. 131 

3. Times are calculated for every other hook, assuming a constant speed while hauling.  132 

4. Hooks closest in time to the hourly haul records are flagged. 133 

5. Between each hook flagged with an hourly haul position, the position of each 134 

intervening hook is interpolated by great circle path navigation, using the time 135 

assigned.  136 

6. Each recorded specimen is placed on the hook closest to its recorded landing time; if 137 

that hook is already occupied, the specimen is placed on the nearest unoccupied hook. 138 

Nominal catch-per-unit-effort (CPUE) 139 

CPUE for surface longline fisheries is nominally defined as the number of fish caught 140 

per thousand hooks. Detailed analysis of individual longline sets shows that even after 141 

deliberate targeting by experienced fishers, CPUE is still an over-dispersed quantity, i.e. 142 

variance is greater than the mean (Fig. 2). We can therefore view CPUE for tunas as being the 143 

result of a heterogeneous Poisson process whereby different areas within the larger fishing 144 

area identified by the skippers are more likely to contain more fish, but where the occurrence 145 

of each individual is independent of the occurrence of another. Implicitly, the scale of such 146 

aggregation is that of the longline set or larger. If no aggregations were apparent at smaller 147 

scales, we would conclude that fishers are targeting effort as efficiently as possible, and that 148 

the finest scale on which tunas may be considered aggregated is that of the set itself.  149 

There are many factors that can determine the likelihood of a particular hook catching 150 

a fish, including depth of the hook, bait type, and of course the timing and location of effort. 151 
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Fish behaviour is also a factor (see Ferno & Olsen 1994); not all fish that are present will 152 

come close enough to detect bait, not all fish that detect bait will bite it and not all fish that do 153 

bite bait will get caught on the hook. Nominal CPUE is therefore only a gross measure of 154 

relative abundance that may confound the effects of contributing factors. For the purpose of 155 

the analysis presented here, no estimate has been made of the effectiveness of fishing effort. 156 

We have not estimated or corrected for these potential errors and therefore implicitly assume 157 

that all hooks have the same likelihood of catching a subject should one be present at that 158 

point during the fishing period. 159 

Set-scale probabilities 160 

Fishing is as much a non-random method of sampling as the skipper can make it. For 161 

target species, the probability of catching at least 1 fish represents the extent of fishers’ prior 162 

knowledge, i.e. how well they are targeting large (set scale) areas preferred by the fish. For all 163 

species, the probability of catching more than 1 subject, and the conditional probability of 164 

catching an additional subject having already caught a first, are preliminary measures of fish 165 

aggregation on the scale of the set. We implicitly assume that the skill of the skippers is equal. 166 

Generation of simulated data 167 

In order to compare the spatial patterns apparent in the real catch data with what might 168 

be expected from a heterogeneous Poisson process, simulated data were generated by Monte 169 

Carlo simulation. The CPUE for the subject species on that set was used to determine the 170 

probability of each hook catching a fish; this probability was then compared with a random 171 

number to determine whether or not that hook catches a fish. Nearest neighbour distances 172 

were then measured as for the real data (see next section). This was repeated 1000 times for 173 

each set. In the generation of simulated data the geometry of the set was preserved so that the 174 

permitted values of gap distances were the same as for the real data (Fig. 3). Also, the CPUE 175 

for each individual set was used in preference to the pooled mean for the fishery, bearing in 176 
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mind that ‘…what is considered to be a clustered pattern with the assumption of homogeneity 177 

in force [i.e. using the pooled mean] could also be the result of heterogeneity’ (Ripley 1981). 178 

This reduces our chances of believing that there is clustering at spatial scales smaller than the 179 

set length, when the effect is in fact caused by spatial variation in CPUE at spatial scales 180 

equal to or larger than the set lengths. 181 

Aggregation index  182 

For each longline set that caught more than 1 subject, the distances between each 183 

subject and all the other subjects were calculated by spherical trigonometry, i.e. calculating 184 

the Great Circle Path between the two locations. The Nearest Neighbour Distance (NND) is 185 

the distance from 1 subject to the nearest other and for each set there are as many NNDs as 186 

there are subjects caught. In order to permit identification and classification of sets possibly 187 

containing tuna schools and/or aggregationsan ‘Aggregation Index’ (AI) was defined, 188 

following Clark & Evans (1954): AI = 1 – (mean NND/mean RanNND), where RanNND is 189 

the mean NND for the simulated data. AI values fall between –1 and 1, with positive values 190 

indicating schooling/aggregation, zero indicating a random distribution, and negative values 191 

indicating repulsion.  192 

RESULTS 193 

Frequency histograms of nominal CPUE for the data used in this analysis are 194 

presented in Fig. 2. For the BIG fishery, which takes place in the warm waters off the north-195 

eastern region (Fig. 1), nominal CPUE was most frequently zero, with occasional catches up 196 

to 10 fish per 1000 hooks. For the STN fishery in northern waters, nominal CPUE was also 197 

most frequently low (<2), but in 10% of cases nominal CPUE was at least 10, and in a few 198 

cases was higher than 20. In southern waters, nominal CPUE for STN was rarely greater than 199 

10, but there were less cases of nominal CPUE being zero, and more cases where nominal 200 

CPUE was greater than 2. In southern waters, nominal CPUE for ALB was most frequently 201 
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zero and always low. In northern waters however, nominal CPUE for ALB was rarely zero 202 

and could be extremely high (>50) in both the STN and the BIG fisheries. Nominal CPUE for 203 

YFN was most frequently zero, but was often greater than 0 and less than 20.  204 

The set-scale probabilities of catching the formal target species (i.e. STN or BIG) and 205 

other subject species (e.g. ALB & YFN) are given in Table 1. The proportion of sets that 206 

caught at least 1 [p(fish > 0)] and more than 1 subject [p(fish > 1)] are detailed, followed by 207 

the conditional probability of catching an additional subject having already caught a first 208 

[p(fish2 | fish1)]. It is apparent in these data that fishers were quite effective at targeting STN 209 

[p(STN) ≈ 80–90%] and that these were not usually found alone [p(STN2 | STN1) ≈ 90%]. 210 

When BIG were targeted, the probability of catching at least 1 target was much lower [p(BIG) 211 

≈ 60%] and there was only a 50% chance of catching another BIG on the same set. The 212 

probability of catching at least 1 YFN was the same as for the formal target species BIG 213 

[p(YFN) ≈ p(BIG) ≈ 60%], but it was more likely that more than 1 YFN would be caught on 214 

the same set [p(YFN2 | YFN1) ≈ 70%]. ALB were apparently ubiquitous in both the BIG and 215 

STN fisheries off the North Island [p(ALB) ≈ 100%; p(ALB2 | ALB1) ≈ 100%]. This 216 

provides fishers with their basic income, which is then supplemented by less frequent but 217 

more lucrative catches of the target species (T. Murray pers. comm.). ALB were caught less 218 

frequently in the longline fisheries off the South Island [p(ALB) ≈ 40%], where they were 219 

often caught on their own [p(ALB2 | ALB1) = 50%]. There are separate fisheries for younger 220 

albacore in surface waters that are able to target discrete schools using trolling gear.  221 

For each species, NND calculations were carried out for sets that caught more than 1 222 

subject; the mean number of fish per set in this subsample is listed. The NNDs are generally 223 

around 100 m, which is the same order of magnitude but 25–50% shorter than the NNDs 224 

resulting from the Poisson process (RanNND). The frequency distributions for the real and 225 

simulated data are presented in Fig. 4. In all cases the NNDs are skewed to the shorter 226 

distances, mostly less than 200 m. If the subjects were distributed randomly along the set, as 227 
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they are in the simulated data, the NNDs would be more variable and generally greater. The 228 

AI was calculated for each set and the mean AI for each fishery is listed in Table 1. The 229 

cumulative frequency distributions of AIs for all individual sets are presented in Fig. 5. 230 

Comparing the cumulative frequency distributions for the real AIs with those calculated from 231 

Monte Carlo simulations on the same set we see that while the AIs for the simulated data are 232 

normally distributed about zero in all cases, the AIs for the real data are positively skewed 233 

relative to these, and are normally distributed about peaks at 0.4 to 0.7.  234 

DISCUSSION 235 

For spatial point processes (as opposed to distributed continuous variables, for which 236 

geostatistical methods might be more suitable — see Pelletier & Parma 1994) the Poisson 237 

process plays a role corresponding to that of the normal distribution within probability 238 

distributions (Cox et al. 2000). Here a heterogeneous Poisson process was used as a base 239 

against which to compare the spatial properties of longline catch data for tunas, in order to 240 

establish whether and at what scales clustering of fish along sets was apparent. The Poisson 241 

process was chosen because it is the most obvious way to generate stochastic point events 242 

within a limited 2 dimensional space, and variable expectations obtained from measured 243 

values of CPUE could be used in order to prevent the variability of CPUE among sets 244 

confounding the interpretation of results. 245 

Nearest neighbour distances (NNDs) were calculated for real and simulated data and 246 

the resulting frequency distributions were compared. An Aggregation Index (AI) was defined 247 

that is identical to that of Clark & Evans (1954) (i.e. the ratio of mean NNDs for the real data 248 

to the expected mean NNDs for a random process) except for the scaling (–1 to 1) introduced 249 

here by subtracting the NND ratio from unity. In the real data, NNDs are much shorter than 250 

those predicted by a Poisson process with the same heterogeneity as nominal CPUE. The 251 

NNDs, being on such a small scale (100 to 200 m) are probably determined by individual 252 

behaviour in relation to con-specifics and may therefore be indicative of schooling. However, 253 
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due to the fairly long soak time of longline sets and the high swimming speeds of tunas it is 254 

not possible to firmly establish that schooling is really the mechanism underlying clustered 255 

NNDs; it is possible that even adjacent hooks were taken several hours apart, which would 256 

only imply aggregation, hence our use of the term ‘Aggregation Index’. More exact 257 

information on the times that fish were hooked would resolve this potential error of 258 

interpretation. This information may be obtained by using a Time Depth Recorder (TDR) on 259 

each snood line. However, while deployment of TDRs is practicable for experimental fishing 260 

it is unlikely to be so for commercial operations. There is an obvious trade-off between data 261 

quality and sample size when comparing data from experimental and commercial fishing; in 262 

this study we have considered >4 million hooks and while the use of TDRs would 263 

undoubtedly have added to the information content of the data, the cost of deployment would 264 

have been prohibitive.  265 

We should recall that NND analysis has only been carried out for sets where >1 266 

subject was caught. The results must therefore be interpreted alongside the set-scale 267 

probabilities for catching 1 and >1 fish. With this in mind we might only consider tunas to be 268 

aggregated where both p(fish > 1) and p(fish2│fish1) > 0.5, i.e. where there is more chance of 269 

catching >1 rather than just 1 fish and the presence of 1 fish implies an increased chance of 270 

catching another. These criteria are only met in the fisheries for STN off both the North and 271 

South Island and ALB and YFN off the North Island. We could conclude that YFN is less 272 

abundant and/or aggregated and that BIG caught off the North Island and the ALB caught off 273 

the South Island are quite solitary.  274 

The motivations for aggregations of individuals or schools (i.e. the environmental 275 

properties attractive to tuna) have not been determined in this study. Their interpretation in 276 

relations to the metrics derived here will not be straightforward. The aggregations may be a 277 

direct response to local prey concentrations, which in turn may be the result of local ocean 278 

dynamics and enrichment processes at scales less than 100 km, i.e. sub-mesoscale. But the 279 
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distribution of tuna prey is itself patchy and is not likely to be phase-locked with production at 280 

lower trophic levels. While tunas are more highly mobile than their prey they have to cross 281 

comparatively empty space in between prey encounters and would be more likely to take a 282 

baited hook during this time (Bertrand et al. 2002b). It is therefore possible that tunas are 283 

conducting non-trophic migrations through New Zealand waters and that proximate 284 

environmental conditions are to be endured whether or not they especially favourable. 285 

Data have only been considered in the horizontal dimension, while longline fishing 286 

gear is targeted at tunas with different depth preferences. Longlines are set deeper for BIG, 287 

therefore they are shorter for the same gear/vessel that might previously have been fishing for 288 

STN. This analysis has been stratified by target species and area for this reason. Considering 289 

some hypothetical sources of error, clustering might be apparent along a fishing line that was 290 

only effectively targeting tuna habitat with e.g. the deepest hooks. The spacing of such 291 

clusters would be comparable to the distance between surface floats. Alternatively, hooks at 292 

intermediate depth might be most effective; in this case the there might be 2 clusters in 293 

between floats. The average distance between floats is ca. 500 m. The NNDs are shorter than 294 

this and so neither pattern of effective effort (see Bigelow et al. 2002) is supported by the 295 

NNDs measured in the data. The behaviour of fish that have been caught might modify the 296 

potential for nearby hooks to catch fish; such a tendency would, however, make aggregations 297 

less, rather than more likely. Similarly, a school of fish might swim along the line and so 298 

catches might then appear to be randomly distributed. Such behaviour would indeed result in 299 

spatial patterns analagous to those produced by the Poisson process; AI would therefore be 300 

zero. The presence of caught species other than tuna would interfere with the data in that a 301 

hook that has already been taken by a shark, for example, would no longer be available to a 302 

tuna. However, while it is the case that the majority of the total fish catch on a longline is 303 

bycatch, it is also true that the majority of hooks do not catch anything at all (Francis  1999). 304 

It is therefore unlikely that there is any systematic bias in the data due to bycatch. In fact all 305 
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the possible errors of interpretation that we have considered would introduce a conservative 306 

bias to the data, i.e. fish would be more randomly distributed along the line rather than more 307 

aggregated.  308 

Issues concerning spatial and temporal scale arise frequently in discussions on the 309 

behaviour and spatial dynamics of tunas (Hunter et al. 1986). Tagging studies often report 310 

either long-distance movements or fine-scale behaviour (Kirby 2001), but rarely investigate 311 

behaviour in relation to con-specifics. We struggle with how to use knowledge of physiology 312 

and behaviour in order to understand movement patterns and population dynamics. Modelling 313 

studies have tried to address the conditions under which school formation may occur, based 314 

on food intake requirements (Dagorn et al. 1995), swimming efficiency (Stocker 1999) and 315 

social interaction (Dagorn & Freon 1999) and recent work illustrates how we can study the 316 

conditions favouring aggregation (Bertrand et al. 2002a,b). Further work could assess in more 317 

detail the factors motivating tuna behaviour and spatial dynamics in New Zealand waters. 318 

Specifically, the trophic dynamics of fishing grounds should be investigated (e.g. Roger 1994, 319 

Young et al. 1996a, 1996b, 1997, Bertrand et al. 2002a,b) in relation to observations of 320 

surface oceanography (e.g. Uddstrom & Oien 1999, McClatchie et al. 2001). Experimental 321 

fishing, with simultaneous measurement of in situ physical and ecological variables (e.g. 322 

Bertrand et al. 2002a,b) would start to address cause and effect relationships determining the 323 

spatial distribution of tunas and therefore variability in CPUE. Concurrently, more 324 

comprehensive analysis of historical datasets should be undertaken to estimate fishing depths 325 

and effective effort in comparison with oceanographic data (e.g. Bigelow et al. 2002) and to 326 

explore the spatial patterns and interactions among subject, target and bycatch species. It 327 

would be interesting to establish whether or not the schools/aggregations identified in this 328 

analysis are themselves aggregated at larger scales that are still smaller than the area sampled 329 

by the longline. By identifying the characteristic scales of these patterns it might be possible 330 
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to distinguish between the two processes. This in turn is likely to enable better forecasting of 331 

fish distributions in relation to oceanographic variability. 332 

CONCLUSIONS 333 

CPUE for tunas in surface longline fisheries in New Zealand waters is highly variable 334 

to the point of being statistically overdispersed. It varies greatly among fishing sets even after 335 

targeting of key species by experienced fishers. A partial explanation for this is that tunas are 336 

not randomly distributed throughout the EEZ but are very patchily distributed, forming 337 

schools/aggregations with length scales of O(100 m) which may themselves be aggregated at 338 

scales that are yet to be determined. 339 
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Figure and Table Legends 414 

Fig. 1 Locations of observed surface longline sets in New Zealand waters 1993 to 1998, 415 

targeting (a) southern bluefin STN and (b) bigeye BIG  416 

Fig. 2 Frequency distributions of nominal CPUE (catch per 1000 hooks) for observed surface 417 

longline sets in New Zealand waters 1993–8, by Subject Species, Target Species and Area.  418 

Fig. 3 Schematic representation of the calculation of distances between fish. The line 419 

represents the set, stars represent the locations of fish, and small arrows represent the 420 

distances measured between them. On the left, representing an actual set, 4 fish are clustered. 421 

On the right, representing the results of 3 Monte Carlo simulations, the geometry of the set is 422 

preserved and the actual CPUE for that set is used to obtain a similar number of subjects 423 

distributed at random along the line. Nearest Neighbour Distances (NNDs) (small arrows) are 424 

then measured. 425 

Fig. 4 Frequency distributions for Nearest Neighbour Distances (NNDs) by Subject species, 426 

Target species and Area. 427 

Fig. 5 Cumulative frequency distributions for Aggregation Index (AI) by Subject Species, 428 

Target Species and Area. 429 

Table 1. For each fishery (defined by subject species, target species and area) we have listed 430 

the total number of sets analysed, the set-scale probabilities for catching at least 1 subject, the 431 

number of sets that caught at least 1 subject, the set-scale probabilities for catching >1 subject 432 

and the conditional probability of catching a second subject having caught a first, the number 433 

of sets that caught >1 subject (i.e. the subset used for spatial analysis) and the mean number 434 

of subjects caught on this subset. We then present their mean Nearest Neighbour Distances 435 

(NND), the mean NNDs for the heterogeneous Poisson process (RanNND) and the mean 436 

Aggregation Index (AI). ‘Mean set length’ is the mean GCP distance between start and end of 437 

set, a conservative estimate of line length 438 
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REAL DATA SYNTHETIC DATA
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Fig. 5  456 
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