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Abstract: We introduce a length-based, age-structured model, MULTIFAN-CL, that provides an integrated
method of estimating catch age composition, growth parameters, mortality rates, recruitment, and other pa-
rameters, from time series of fishery catch, effort, and length frequency data. The method incorporates Baye-
sian parameter estimation, estimation of confidence intervals for model parameters, and procedures for hy-
pothesis testing to assist model development. We apply the method to South Pacific albacore (Thunnus ala-
lunga) fishery data, and demonstrate the incorporation of model structure such as spatial heterogeneity, age-
dependent natural mortality and movement rates, time series trends and seasonal variation in catchability,
and density-dependent growth. Consistency of the results of the albacore analysis with various exogenous
sets of biological and environmental data give credence to the model results.

Introduction
Age-structured models are now the method of

choice for many fisheries stock assessments. Models
range from simple deterministic methods, such as
virtual population (or cohort) analysis (Megrey
1989), to statistical models, in which variability in the
data and various population processes is acknowl-
edged (Doubleday 1976; Paloheimo 1980; Fournier
and Archibald 1982; Pope and Shepherd 1982;
Dupont 1983; Deriso et al. 1985; Schnute and Ri-
chards 1995; McAllister and Ianelli 1997).

Statistical age-structured models are superior to
deterministic models in that they permit the estimation
of confidence intervals for the parameter estimates.
This allows uncertainty in stock assessments to be
incorporated into management advice through deci-
sion or risk analysis. Bayesian approaches to age-
structured models (McAllister and Ianelli 1997; Punt

and Hilborn 1997) now provide a powerful frame-
work for undertaking integrated analysis of fish
stocks and for expressing the full range of uncertainty
in the resulting advice given to fisheries management
authorities.

A second advantage of statistical age-structured
models is that they provide an objective means of
comparing model hypotheses regarding alternative
“states of nature”. In a maximum-likelihood frame-
work, the usual frequentist approach of testing nested
models using likelihood-ratio tests can be applied. In
the Bayesian framework, the posterior odds of com-
peting models can be computed. In either case, statis-
tical guidance can be obtained regarding an appropri-
ate model structure for the case at hand.

Both deterministic and statistical catch-at-age
models rely on catch-at-age data. These are some-
times derived from the analysis of annuli on various
body parts of individual fish. Perhaps more com-
monly, age composition is derived from length fre-
quency samples using an age-length relationship prior
to the age-structured analysis taking place. In this
type of sequential approach, the variability in length-
at-age is often ignored. It would be preferable to es-
timate catch-at-age from the length frequency data
and the parameters of the age-structured model si-
multaneously. In this way, parameter estimates would
be conditioned on the length data rather than the
catch-at-age estimates.
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In this paper, we describe an age-structured model
that extends the MULTIFAN method of estimating
catch age composition from length composition
(Fournier et al. 1990). The new model is called
MULTIFAN-CL (Catch at Length). The major exten-
sion concerns the parameterization of the proportions-
at-age in the length frequency samples. In the original
MULTIFAN, the proportions-at-age are free pa-
rameters. Fournier et al. (1991) extended the model
using a “survey sample” parameterization, in which
the length samples are assumed to be random samples
of the population (with optional selectivity parameters
for the initial age classes). In MULTIFAN-CL, we
assume that the length samples are taken from the
catch of an age-structured fish population; the pro-
portions-at-age in the length samples are therefore
constrained by the catch equations that express the
age-structured population dynamics. The model is
fully integrated – growth and catch-at-age structure
are estimated simultaneously with recruitment, selec-
tivity, catchability, natural mortality, and other pa-
rameters. Except for the parameterization of the pro-
portions-at-age, the same likelihood function is em-
ployed for the length frequency data in all versions of
the MULTIFAN model.

The Bayesian framework of the model is amenable
to the formulation and testing of various hypotheses
regarding the dynamics of the stock. Some of the
model hypotheses that we formulate and test in this
paper include spatial structuring of the population
and fisheries, density-dependent growth, seasonal cy-
cles in catchability, age-dependent rates of natural
mortality, and age-dependent fish movement. The
model is applied to catch, effort and length frequency
data for South Pacific albacore, Thunnus alalunga.

Data structures
The fundamental data structure of the model is a

“fishery”, which is defined as a collection of fishing
units having similar catchability and selectivity char-
acteristics with respect to the target species. Fisheries
may be specific to geographical regions if spatial het-
erogeneity in the population and fisheries is to be
modeled.

Each occurrence of a fishery at a particular time is
termed a fishing incident. In reality, fishing is more or
less continuous, so the data for each fishery need to
be aggregated over appropriate time intervals. Each

fishing incident is associated with a data record,
which is made up of an estimate of the total catch (in
number of fish), the total effort and a length-
frequency sample. Effort and the length-frequency
sample may be missing for some fishing incidents.

The catch equations
The catch equations govern the dynamics of the

exploited age-structured population. To demonstrate
the addition of spatial structure, we assume a one-
dimensional, three-region spatial configuration. More
complicated spatial structure could be accommodated
within the model framework, as warranted by the
particular application. For simplicity of notation it is
assumed that there is only one fishery operating in
each region and that there is only one fishing incident
per fishery per year. The model is easily generalized
to accommodate a variable number of fisheries per
region and fishing incidents per fishery per year.

The catch equations are as follows:
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where i indexes year, j indexes age class, k indexes
region, n is the number of years of fishing, a is the
number of age classes in the population, r is the num-
ber of regions, Cijk  is the catch (in number of fish) of
age class j fish in region k in year i, Ci k⋅  is the total
catch observed in region k in year i, Fijk  is the in-
stantaneous fishing mortality rate of age class j fish in
region k in year i, M ijk  is the instantaneous natural
mortality rate of age class j fish in region k in year i,
Zijk  is the instantaneous total mortality rate for age

class j fish in region k in year i, Tijk  is the number of
age class j fish in the population in region k at the
beginning of year i before movement has taken place,
N ijk  is the number of age class j fish in the popula-
tion in region k at the beginning of year i after move-
ment has taken place, Ri  is the recruitment at the
beginning of year i, γk  is the proportion of recruit-

ment occurring in region k, and βjkl  is a k by k diffu-
sion matrix B j  for age class j fish.

The cummulative age class (a) is designed to
group fish above an age where they can be assumed
to have insignificant growth (Fournier et al. 1991).

Movement hypothesis
The inclusion of spatial structure in the model re-

quires the specification of a movement hypothesis. In
the South Pacific albacore example, we use a one-
dimensional diffusion model operating in three re-
gions (r=3). In this case, the elements of B j  are

given by
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where 1, d2 > 0 and d3 > 0 specify the relative distri-
bution of cohort abundance among regions at equilib-
rium and ν j  is the age-dependent diffusion rate. We

employ a flexible parameterization of ν j  which can
result in increasing, decreasing or constant diffusion
rate with increasing age:
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Assumptions regarding constraints
on natural and fishing mortality rates

A fundamental characteristic of statistical age-
structured models is that they constrain the variation
of mortality rates by age and time in a regular fash-
ion. Constraints are placed separately on the variabil-
ity of natural and fishing mortality rates.

Natural mortality
In the South Pacific albacore application, we as-

sumed that the instantaneous natural mortality rate is
independent of year and region, but may vary with
age. Later, we show that this age dependency is sup-
ported by the data. For a given application, a range of
more and less restrictive constraints on natural mor-
tality can be tested.

Fishing mortality
We restrict the variation in the instantaneous fish-

ing mortality rates Fijk  according to the “separabil-
ity” assumption (Doubleday 1976; Paloheimo 1980;
Fournier and Archibald 1982), which partitions Fijk

into an age-dependent effect (selectivity) and a time-
dependent effect (catchability). Consider for simplic-
ity an individual fishery (i.e., drop the k subscript).
We assume that

(10) log log log log( ) ( ) ( ) ( )F s q Eij j i i i= + + + ε

(11) log log( ) ( )q qi i i+ = +1 η

where s j  is the selectivity for age class j (assumed
constant over time), qi  is the catchability in year i,
Ei  is the observed fishing effort in year i, εi  are
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normally distributed random variables representing
large transient deviations in the effort–fishing mortal-
ity relationship (or simply, effort deviations), and ηi

are normally distributed random variables represent-
ing small permanent changes in catchability.

Selectivity can be modeled as a function of age
class, for example using a gamma function (Deriso et
al. 1985). We have preferred to allow the s j  to be
separate parameters but have applied a transforma-
tion that makes selectivity a length-based rather than
an age-based concept (Appendix). The transformation
ensures relatively small differences in s j  between
adjacent age classes having large overlap of their
length distributions, as would be expected where se-
lectivity is fundamentally length-based.

Catchability is allowed to vary slowly over time.
Following a concept introduced by Gudmundsson
(1994), we assume that the qi  have the time series
structure of a random walk (equation 11), which is
the simplest statistical model of a slowly varying ran-
dom quantity. We make the prior assumption that the
variance of ηi  is small compared toεi .

Random walk steps can be taken at each succes-
sive fishing incident, or less frequently, as might be
appropriate when multiple fishing incidents by one
fishery occur within a year or fishing season. In the
albacore analysis, random walk steps are taken annu-
ally for all fisheries.

Where the frequency of fishing incidents is greater
than one per year, we may allow catchability within a
year to vary with a regular seasonal pattern. Equation
(10) then becomes

(12)
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where m is the month in which the fishing incident
occurred and c1 and c2 are the seasonality parameters.

Assumptions regarding length-at-age
MULTIFAN-CL uses length data to estimate

catch-at-age and therefore makes assumptions con-
cerning the length distribution of the fish. These as-
sumptions are identical to those used in Fournier et al.
(1990), to which the reader is referred for details. The
assumptions are (i) the lengths of the fish in each age

class are normally distributed, (ii) the mean lengths-
at-age lie on (or near) a von Bertalanffy growth
curve, and (iii) the standard deviations of the lengths
for each age class are a linear function of the mean
length-at-age.

We have introduced an additional, optional hy-
pothesis concerning density-dependent growth, which
can be incorporated into an analysis if warranted by
the data. For many species it is suspected that indi-
viduals of weak cohorts may grow faster than those
of more abundant cohorts (i.e., density-dependent
growth). If true, this phenomenon could have a large
effect on the conclusions drawn from a length-based
stock assessment.

Let Rβ be the normalized relative cohort strength

for cohort β, such that ( )R N R Rβ β σ= −1 , where

R  and σR  are the mean and standard deviation of
recruitment. The changes in mean length are effected
by adjusting the apparent age (i.e., the age implied
from the length using the inverse of the growth func-
tion) of the fish before the length-at-age is calculated.
For fish of cohort β, j years after recruitment, the
adjusted age ′j  is

(13) ′= +
+ −
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where g is a parameter determining the amount of
density-dependent growth; if g = 0 , ′=j j . Since the
standard deviation of R has been normalized to 1, the
“generic” variation in R will be about -2 to 2. Thus
the difference in ′j  between the strongest and weak-
est cohorts of any given age class will be approxi-

mately 19 1
1 2

1
1 2

.
exp( ) exp( )+ −
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. For

g=-1.08 (which is the estimate for the albacore data)
this yields a generic variation of about -1.5 years, i.e.
the adjusted age of the strongest cohort is about 1.5
years less than that of the weakest cohort.

Parameter estimation
Bayesian parameter estimation involves the com-

putation of the mode of the posterior density function.
We use the MPD (maximum of posterior distribution)
method (Bard 1974), which involves maximizing the
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sum of the log-likelihood of the data plus the log of
the prior density function. We therefore maximize a
function consisting of the sum of three components:
the log-likelihood of length frequency data, the log-
likelihood of total catch estimates and the log of the
prior distribution for the effort-fishing mortality rela-
tionship.

Contribution of the length frequency data
Due to the large variability that often occurs in

length frequency data, we employ a robust likelihood
function. The motivation for using this procedure and
its technicalities are described in Fournier et al.
(1990). We shall not repeat this discussion here, but
for convenient reference we briefly describe the form
of the log–likelihood function employed.

Let ~Qiα  denote the observed proportion of fish in
length frequency sample α having a length lying in
length interval i. If the ~Qiα  are derived from a ran-
dom sample of size Sα , they would be random vari-
ables with means Qiα  and variances
( )1 − Q Q Si iα α α . Two modifications have been
made to this formula. If Qiα = 0  the formula implies

that the variance of ~Qiα = 0 . To decrease the influ-
ence of areas where no observations are expected, we
add a small number to the variance formula. To re-
duce the influence of very large sample sizes we have
assumed that sample sizes >1 000 are no more accu-
rate than sample sizes of 1 000. Set
ξα α αi i iQ Q= −( )1  and τα α

2 1 1 000= min( , )S . As-

sume the variance of ~Qiα  is given by

( ).ξ τα αi I+ 0 1 2 , where I is the number of length
intervals in the length frequency samples. The likeli-
hood function contribution for X length frequency
samples is then

(14)
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Taking the logarithm of expression (14) we obtain the
log–likelihood function for the length frequency data:
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The addition of 0.01 in equations (14) and (15)
improves the robustness of the estimator by reducing
the influence of observations that are more than about
three standard deviations from the mean (Fournier et
al. 1990).

Contribution of the observed total catches
Assuming for simplicity that there is only one fish-

ery per year, the contribution of the observed total
catches is given by

(16) ( ) ( )( )∑ −−
i

i
obs
ic CCp

2
.. loglog

where pc  is determined by the prior assumption made
about the accuracy of the observed catch data. For
the albacore analysis, we assumed pc =200, consis-
tent with a coefficient of variation of about 0.07.

Contribution of the prior distribution for the ef-
fort− fishing mortality relationship

Given the random walk structure assumed to oper-
ate for time-series changes in catchability, it follows
that the prior distribution for the ηi  is normal with
zero mean. However, the prior distribution forεi  is
assumed to be a robustified normal distribution, i.e.
the probability of events at the tails of the distribution
is increased relative to a standard normal distribution.
Then, the contribution of the Bayesian priors on the
ηi   and εi  (see equations 10 and 11) is given by

(17) ( )[ ]∑ ∑ +ε−+η− εη
i i

ii pp 01.0explog 22 .

The size of the constants p pη εand  are adjusted to
reflect prior assumptions about the variances of ηi

and εi . For the albacore analysis, we assumed



6

p pη ε= =25 10and , which is equivalent to as-
suming that the coefficients of variation of ηi  and εi

are 0.14 and 0.22, respectively. Note that the second
term of eq. 17 corresponds to an improper density.
Therefore, the variance corresponding to the weight
pε  cannot be estimated and must be specified.

Nonlinear optimization
The parameters of the model are estimated by

maximizing the sum of expressions 15, 16, and 17.
The maximization was performed by an efficient op-
timization using exact derivatives with respect to the
model parameters. The derivatives were calculated
using an extension of the technique known as auto-
matic differentiation (Griewank and Corliss 1991), an
approach especially useful for models with large
numbers of parameters. It also provides quick and
accurate estimates of the Hessian matrix at the mode
of the posterior distribution, which can be used to
obtain estimates of the covariance matrix and confi-
dence limits for the parameters of interest.

Estimation of confidence intervals
Confidence limits for the parameter estimates are

calculated by employing the usual second order ap-
proximation to the mode of the posterior distribution
(Bard 1974).  Let θ θ1, ,K n  denote a minimal  set of n
model parameters from which all model parameters
can be calculated, and let ( )p nθ θ1 , ,K  be some pa-

rameter of interest, while ( )l Kθ θ1 , , n  is the loga-
rithm of the posterior distribution. The estimated
standard deviation, pσ , for p is given by the square

root of   ∂ ∂θ ∂ ∂θp piij j ij∑ Λ  where

( )Λij i j=
−

∂ ∂θ ∂θ2 1
l , with the calculations carried

out at the MPD. Then, 95% confidence limits for the
p are given by [ ]p p p p− +196 196. , .σ σ . These con-
fidence limits are not invariant under reparameteriza-
tion. To compensate somewhat for this, the confi-
dence limits for parameters that must be positive,
such as estimates of biomass, are calculated by com-
puting the confidence limits for the logarithms of
these parameters and then transforming the confi-
dence limits. This yields the confidence limits

( ) ( )[ ]p p p p p pexp . , exp .− 196 196σ σ .

The above procedure provides approximate confi-
dence intervals for the model parameters (initial co-
hort size, selectivity and catchability coefficients,
natural mortality rates, growth parameters, etc). For
stock assessment purposes, it may be desirable to
have confidence intervals for quantities of interest,
such as adult biomass, that are functions of the model
parameters. The variances (and hence confidence in-
tervals) for such quantities are determined using the
delta method.

Hypothesis testing
It is frequently of interest in statistical modeling to

add model structure in the form of a hypothesis con-
cerning some process of interest, and to observe the
resulting change in model performance. Let H1 (with
n1 parameters) and H2 (with n2 parameters) denote
alternative models to be tested. In a Bayesian frame-
work, the support for H2 over H1 provided by the data
D is measured by the posterior odds, which is the
product of the ratio of the integrated likelihoods,
known as the Bayes factor (Kass and Raftery 1994),
and the prior odds for H2 against H1:

(18)
( )
( )

( )
( )

( )
( )

p H D
p H D

p D H
p D H

p H
p H

2

1

2

1

2

1

|
|

|
|

=























.

The Bayes factor is interpreted as the sample “weight
of evidence” for H2 over H1.

While appealing on theoretical grounds, there are
two impediments to applying Bayes factors in prac-
tice. First, it is necessary to provide a Bayesian prior
distribution for the parameters. For large problems
the usual practice is to provide specific Bayesian pri-
ors for a small number of parameters of interest and
to apply a locally uniform prior on the remaining pa-
rameters. This causes no problem when computing
point estimates of the parameters. However, when
computing Bayes factors, such diffuse priors lead to
the well-known Lindley paradox (Aitken 1991),
where, for point null hypotheses, the Bayes factor will
tend to infinity as sample size tends to infinity.

 A second difficulty is that evaluation of the Bayes
factor involves integration of the likelihood functions
over all model parameters. For large models (such as
the albacore model), this may not be feasible because
of limited computing power.
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To avoid these problems, we have employed pos-
terior Bayes factors (Aitkin 1991), which allow (but
do not require) models to include priors with diffuse
specifications. Posterior Bayes factors are generally
applicable for arbitrary models and their use does not
lead to the Lindley paradox (Aitkin 1991). The as-
ymptotic form for the posterior Bayes factor for H2

over H1 is

(19)
( )
( )

( )A
L

L
n n

21
2 2

1 1

22 1 2= −θ
θ

.

This is a penalized version of the likelihood ratio,
with the penalty based on the difference in the number
of parameters of the two models. The A21  is then a
measure of the weight of sample evidence in favor of
H2 over H1. We use Aitkin’s calibration that values of
A less than 0.05, 0.01 and 0.001 constitute “strong,
very strong and overwhelming” sample evidence of
one model over the other.

Application to South Pacific albacore

Background
Albacore comprise a discrete stock in the South

Pacific Ocean (Murray 1994). Adults (larger than
about 80 cm FL) spawn in tropical and sub-tropical
waters between about 10°S and 25°S during the aus-
tral summer (Ramon and Bailey 1996), with juveniles
recruiting to surface fisheries in New Zealand coastal
waters and in the vicinity of the sub-tropical conver-
gence zone (STCZ) in the central Pacific about two
years later. Distant-water longline fleets of Japan,
Korea and Taiwan, and domestic longline fleets of
several Pacific Island countries catch primarily adult
albacore virtually throughout their range. A troll fish-
ery for juvenile albacore has occurred in New Zea-
land coastal waters since the 1960s and in the central
Pacific in the region of the STCZ since the mid-
1980s.  Driftnet vessels from Japan and Taiwan tar-
geted albacore in the central Tasman Sea and in the
central Pacific near the STCZ during the 1980s. Sur-
face fisheries are highly seasonal, occurring mainly
during December to April, while longline fisheries
operate throughout the year. Total annual catches
have varied between 20 000 t and 52 000 t since the
1960s. Longline gear accounts for the majority of the
catch, about 30 000 t per year on average. Troll

catches are relatively small, generally producing less
than 10 000 t per year. The driftnet catch reached
22 000 t in 1989, but has since declined to zero fol-
lowing a United Nations moratorium on industrial-
scale driftnetting. The approximate distribution of the
fisheries is shown in Fig. 1.

Fig. 1.  Distribution of longline (light shading), troll
(medium shading) and driftnet (dark shading) fisheries
for South Pacific albacore. The three rectangular zones
define the model regions, which are used in the classifi-
cation of fisheries and spatial stratification of the model.

Fisheries data
Catch, effort and size composition data have been

routinely collected from the fisheries since the early
1960s. The data have inconsistent temporal resolution
and include periods where effort, length frequency
data, or both are missing. Length frequency sample
sizes are highly variable. Such heterogeneous data,
which are typical of many fisheries data sets, are
readily handled by MULTIFAN-CL.

We defined fisheries on the basis of fishing method
and region. Three regions are specified by the latitu-
dinal bands 0− 10°S (region A), 10°− 30°S (region B)
and 30°− 50°S (region C) (Fig. 1). The distant-water
longline fleets fishing in these regions are defined as
separate fisheries by region, but are aggregated
across nationality. The fleets of small-scale, domestic
longliners that have developed in several Pacific Is-
land countries (region B) in recent years are also de-
fined as a fishery. Other fisheries are the troll fishery
in New Zealand coastal waters, the troll fishery oper-
ating in the STCZ and the driftnet fishery (all region
C).

For the longline fisheries, fishing incidents are ag-
gregated by quarterly time periods (Jan-Mar, Apr-
Jun, Jul-Sep, Oct-Dec). For the surface fisheries,
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which tend to operate during the summer months
only, fishing incidents are aggregated by month. With
this data stratification, the albacore database for
years 1962 through 1993 consists of 591 fishing inci-
dents. Of these, 566 fishing incidents have a fishing
effort estimate and 381 have a length frequency sam-
ple.

Constraints and model hypotheses
It is necessary to specify the number of age classes

to be considered in the model. For the presentation of
results below, we chose a model with eleven age
classes, which is consistent with previous aging stud-
ies (Labelle et al. 1993). Trials with larger numbers
of age classes did not significantly alter the results of
the analysis.

We applied a one-dimensional diffusive movement
hypothesis to the three-region spatial structure of the
model. This hypothesis was considered to be a rea-
sonable, albeit simple, representation of South Pacific
albacore movement on the basis of qualitative exami-
nation of tagging data (Labelle 1993) and the varia-
tion in albacore size with latitude (smallest in the
south, increasing towards the equator). Other move-
ment hypotheses and/or spatial configurations could
easily be incorporated into the model and tested. One
such alternative hypothesis (spatial homogeneity) has
been tested and is discussed below.

Several additional constraints on the model were
necessary to produce stable behavior during parame-
ter estimation. These include constraints that recruit-
ment occurs only in region C (the southern-most re-
gion), recruitment varies log-normally among years,
and selectivity coefficients are constant over time
within fisheries.

The hypothesis testing procedure outlined earlier
was used to test numerous alternative model struc-
tures, consisting of various combinations of the fol-
lowing model hypotheses (with the simpler alternative
hypothesis in parentheses): spatial structuring of the
population into three regions, as defined earlier (spa-
tial homogeneity); age-dependent (age-independent)
diffusion of fish among regions; age-dependent (age-
independent) natural mortality rate; seasonal vari-
ability (constancy) in catchability for all fisheries;
and density-dependent (density-independent) growth.
The posterior Bayes factors indicated overwhelming
support of the data for each of these hypotheses (Ta-
ble 1). While these tests are by no means exhaustive,

they indicate how hypotheses that are supported by
the data can be readily identified and incorporated
into the analysis.

Table 1.  Posterior Bayes factors (Ai1) for comparisons of
model 1 with model i (i=2,… ,6).

Model Log-
likelihood

Number of
parameters

Ai1

1. Full model 57 543.7 901

2. Model 1
without spa-
tial structure

57 268.4 876 1.6E-116

3. Model 1 with
age-
independent
diffusion

57 491.9 899 6.38E-23

4. Model 1 with
age-
independent
natural mor-
tality

57 519.7 892 8.54E-10

5. Model 1
without sea-
sonal catch-
ability for all
fisheries

57 127.0 887 1.4E-179

6. Model 1
without den-
sity-
dependent
growth

57 430.3 900 7.97E-50

Some of the results of the South Pacific albacore
analysis that illustrate the model features are given
below.

Selectivity and catchability coefficients
Estimated selectivity coefficients (Fig. 2) broadly

reflect differences in catch size composition among
the fisheries. Most fisheries display a regular pattern
of selectivity, either increasing with age class or uni-
modal over a restricted range of age classes. In con-
trast, the New Zealand troll fishery shows a bimodal
selectivity pattern, probably reflecting some contami-
nation of this data set with data from different fishing
methods.
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Fig. 2.  Estimated South Pacific albacore selectivity coef-
ficients. Panels a-g correspond to fisheries 1-7 as shown
in Fig. 1.
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Estimated catchability time series are plotted with
effort deviations (εi ), by fishery, in Fig. 3. Strong
trends in catchability are estimated for some of the
fisheries. For the longline fisheries, this is likely to be
due to changes in species targeting by the fleets con-
cerned. Strong seasonal variation, which was a highly
significant addition to the model (Table 1), is also
evident for all fisheries. This seasonality is possibly
related to changes in the vertical distribution of the
albacore in response to seasonal temperature varia-
tion. After the removal of time-series trends and sea-
sonal variation in catchability, the effort deviations
are mostly evenly distributed about zero (Fig. 4), in-
dicating that there is no further information in the
data regarding catchability variation.

Fig. 3. Estimated South Pacific albacore catchability co-
efficients (normalized to the average for each fishery)
(solid lines) and deviations from the effort-fishing mor-
tality relationship (open circles). Panels a-g correspond to
fisheries 1-7 as shown in Fig. 1.
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Fig. 4. Deviations from the effort-fishing mortality rela-
tionship after removal of time-series trends and seasonal
variation in catchability. The deviations are normalized
to the average catchability for each fishery. Panels a-g
correspond to fisheries 1-7 as shown in Fig. 1.

-4

0

4 c

-3

0

3 d

-3

0

3 f

-3

0

3 g

-8

0

8 a

-1

0

1 b

-10

0

10 e

N
or

m
al

iz
ed

 e
ff

or
t d

ev
ia

tio
ns

Growth parameters and catch age composition
The estimation of catch age composition from

length composition assumes, amongst other things,
that albacore exhibit von Bertalanffy growth. We use
a parameterization such that growth is specified by
three parameters - the mean length of the first age
class (45.3 cm), the mean length of the last age class
(100.9 cm), and growth coefficient K (0.190 yr-1).
These parameters can be transformed to provide the
usual von Bertalanffy growth parameter L∞  (107.2
cm). Estimated growth rates over the range of ex-
ploited sizes are almost identical to estimates based
on vertebral ring counts (Labelle et al. 1993).

There is good correspondence between estimated
mean lengths-at-age and obvious modes in the length
frequency samples for most of the fisheries. Examples
of the fits to the length-frequency data are shown in
Fig. 5.

The addition of density-dependent growth to the
model makes the growth of individual cohorts de-
pendent on their initial relative abundance. This effect
appears to be quite strong in South Pacific albacore,
with more abundant cohorts growing slower than less
abundant cohorts - the difference in apparent age
between the largest and smallest cohorts is about 1.5
years. The effect of density-dependent growth on the
estimated mean lengths-at-age is shown in Fig. 5 by
the differences between the solid and dashed vertical
lines for each age class.

Fig. 5.  Examples of fits (model 1 - Table 1) to the South
Pacific albacore length-frequency data. The solid vertical
lines indicate estimated mean lengths-at-age. The dashed
vertical lines indicate mean lengths-at-age in the absence
of density-dependent growth. Both the estimated aggre-
gate (upper line) and age-class specific length distribu-
tions are shown. Panel (a) is a sample from the distant-
water longline fishery in region C (2nd quarter, 1973);
panel (b) is a sample from the sub-tropical convergence
zone troll fishery in region C (March, 1990).

Exploitation rates
Exploitation rates (the proportion of the popula-

tion harvested per year) and their 95% confidence
intervals for two age groups, corresponding approxi-
mately to age classes 2-5 (primarily exploited by the
surface fisheries) and 6-11 group (primarily exploited
by the longline fisheries), have been computed (Fig.



Fournier et al. 11

6). This is an example of quantities of interest that
are functions of other model parameters, with their
confidence intervals estimated using the delta method.

Fig. 6.  Estimated average annual exploitation rates
(heavy lines) and their 95% confidence intervals (thin
lines) for (a) combined age classes 2-5, and (b) combined
age classes 6-11.
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Natural mortality rates
The inclusion of age-dependent M resulted in a

highly significant improvement in model fit (Table 1).
The M estimates are approximately 0.2 yr-1 for age
classes 1-5, after which they increase to approxi-
mately 0.35 yr-1 by age class 9 (Fig. 7). The point at
which M is estimated to increase (at about age class
6, or about 85 cm FL) corresponds well with the size
at onset of female reproductive maturity (Ramon and
Bailey 1996). At this point, the sex ratio of adult al-
bacore also changes rapidly with increasing size to
favor males (Fig. 7). This raises the possibility that M
may be greater for older fish because of high female
mortality associated with the physiological stress of
spawning.

Movement parameters
The diffusion rate was estimated to be a decreas-

ing function of age, declining from 0.35 yr-1 for age
class 1 to less than 0.10 yr-1 for age classes 5 and
older. The confidence intervals on the estimates are
equivalent to coefficients of variation of about 0.7,
suggesting that there is limited information the catch,
effort and length frequency data on movement. Nev-
ertheless, age-dependent diffusion was a significant
model hypothesis (Table 1). Net movement of alba-
core occurs from south to north. The estimates of

population biomass indicate that most of the stock is
located in regions B and C, with very little located in
the northern-most region (Fig. 8). Ignoring spatial
structure entirely resulted in a highly significant deg-
radation in model fit (Table 1).

Fig. 7.  Estimates of South Pacific albacore age-specific
natural mortality rates (solid circles, thick line), their
95% confidence intervals (thin lines), and observed pro-
portions of male albacore by 2-cm length classes (open
circles).
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Population biomass and recruitment
The time series of population biomass and re-

cruitment are key outputs of the model from a stock
assessment viewpoint. The biomass estimates (Fig. 8)
show a strongly increasing trend up to the mid-1970s
and a decreasing trend thereafter until about 1990.
The trends are similar in the three regions.

The recruitment estimates (Fig. 9) are higher for
the first half of the time series, and lower and more
variable during the second half. This pattern drives
the biomass trends observed in Fig. 8. Relatively low
estimates of recruitment are obtained for 1980, 1985
and 1990. Assuming that the age of recruitment is
approximately two years (consistent with the Labelle
et al. (1993) vertebral ring count estimates), the
spawning seasons corresponding to the low recruit-
ments match well with the occurrence of El Niño epi-
sodes (negative values of the Southern Oscillation
Index) in the Pacific Ocean (Fig. 9). The high re-
cruitments in the second half of the time series also
correspond to La Niña events (positive values of the
Southern Oscillation Index) two years prior to re-
cruitment. The relationship is not as good over the
first half of the time series, probably because the ab-
sence of fisheries directed at small albacore during
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this period results in less informative data for esti-
mating recruitment variability.

Fig. 8.  Estimated relative (scaled to the average) biomass
of South Pacific albacore (thick lines) with 95% confi-
dence intervals (thin lines) in (a) region A (0-10°S), (b)
region B (10-30°S), and (c) region C (30-50°S).

0.00

0.05

0.10

0.15

0.20

0.25

0.30 a

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e 
bi

om
as

s

b

0.0

0.5

1.0

1.5

2.0

2.5

1962 1966 1970 1974 1978 1982 1986 1990

Year

c

Fig. 9.  Estimated South Pacific albacore relative re-
cruitment (thick line), and 95% confidence intervals (thin
lines) by year. The dashed line is the average annual
Southern Oscillation Index (SOI) two years prior to re-
cruitment. Negative values of the SOI indicate El Niño
episodes and positive values indicate La Niña episodes.
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Discussion
We have developed an integrated, age-structured

model using length data that may, for many fisheries,
be a viable alternative to sequential methods. Unlike
most age-structured models that use length data to
estimate catch-at-age, our approach fully integrates
catch-at-age and growth parameter estimation with
estimation of recruitment, mortality and related pa-
rameters of the age-structured model.

The model should be potentially applicable to fish
stocks that exhibit an age-class signal in length fre-
quency data. Extensive simulation trials during early
model development indicated that, as expected, the
precision of parameter estimates erodes as the vari-
ability of length-at-age increases. Where there is little
information on catch-at-age in the length frequency
data, the incorporation of independent age-length ob-
servations into the estimation as auxiliary data may
help resolve catch-at-age estimation.

Simulation trials have also confirmed the obvious
result that catchability trends will tend to be underes-
timated if the mean of the prior distribution for the ηi

is zero. Nevertheless, model performance is much
better than if constant catchability was assumed. In
the case of the albacore analysis, the strong catch-
ability trends estimated for the distant-water longline
fisheries are suspected to be due at least in part to
changes in targeting practices among the various na-
tional fleets. Further stratification of the longline
data, or standardization to reduce the effects of tar-
geting variability, may therefore be warranted.

The statistical approach to the age-structured
model and Bayesian framework for parameter esti-
mation and hypothesis testing offers the advantage of
being able to objectively assess the information con-
tent of the data. This enables the construction of ap-
proximate confidence intervals on the parameters of
interest. Because the model is fully integrated, such
confidence intervals incorporate uncertainty arising
from the estimation of catch-at-age from length data,
as well as other sources of variability. The statistical
approach also allows testing of alternative model hy-
potheses, using posterior Bayes factors, enabling sen-
sible decisions to be made regarding model develop-
ment.

We have adopted two variations on classical Bay-
esian methods regarding estimation of confidence in-
tervals and hypothesis testing. First, we assume that
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the posterior distribution is approximately normal in
the vicinity of its mode, and that the covariance ma-
trix is equal to the inverse of the Hessian. These as-
sumptions are standard in maximum-likelihood esti-
mation, and are reasonable in the Bayesian context
for problems with largely non-informative priors
(Bard 1974). Second, we use posterior Bayes factors
rather than the posterior odds for hypothesis testing.
In both cases, our objective was to avoid the necessity
of numerically intensive, high-dimensional integration
of the posterior density function. While Monte Carlo
methods, such as the sampling-importance resampling
(SIR) and the Monte Carlo Markov Chain (MCMC)
algorithms provide efficient means for approximating
such integrals (McAllister and Ianelli 1997), they are
still not feasible for models the size of the albacore
model presented in this paper.

Although further questions concerning the alba-
core analysis need exploration, the consistency of the
model results with various exogenous data sets is en-
couraging. These include the consistency of MULTI-
FAN-CL length-at-age estimates with those previ-
ously derived from vertebral ring counts; the consis-
tency of age-dependent natural mortality rate esti-
mates with changes in albacore sex ratio with size,
and with the size at onset of female reproductive ma-
turity; and the apparent relationship between varia-
tion in estimated recruitment and variation in the
Southern Oscillation Index. While these relationships
require further study, their persistence in ongoing
analyses of updated albacore fisheries data would
provide convincing validation of the model results. In
this case, formal incorporation of such exogenous
data into the model as auxiliary data could improve
the precision and predictive power of the model.

The model could be a useful tool for management
of the South Pacific albacore and other fisheries. Two
key uses come readily to mind, and would require
only minimal adaptation of the existing computer
software. First, the results of the model could be cast
in a form suitable for comparison with limit or target
reference points, as envisaged by the recent United
Nations agreement on straddling and highly migratory
fish stocks (Levy and Schram 1996). This could be
done by calculating the probability that a chosen ref-
erence point is violated by the present estimated
population state, or by projected future population
states estimated under a particular fishing regime. In
the latter case, such forward projections would re-

quire a model for future recruitment (perhaps linked
to large-scale environmental conditions such as indi-
cated by the Southern Oscillation Index). This and
other fishery performance measures provide a con-
venient framework for incorporating uncertainty in
the assessment into management advice (Punt and
Hilborn 1997). Second, forward projections could be
a useful short-term forecasting tool for both the sur-
face and longline fisheries, particularly if the predict-
ability of recruitment from environmental variables is
confirmed. Confidence intervals could be determined
for the projections to capture the uncertainty in future
recruitment and the current population state. Such
forecasting could assist both industry and manage-
ment decision-making.
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Appendix . Length-based selectivity coefficients

This appendix describes the transformation of age-
based selectivity coefficients to coefficients that ac-
count for the degree of length overlap of age classes.
The transformation is designed to make the selectivity
coefficients reflect a length-based, rather than an age-
based process. The following symbols are used in the
derivation of the length-based selectivity coefficients:
c j  is the “age-based” selectivity coefficient for age

class j fish, s j  is the “length-based” or length-
averaged selectivity for age class j fish, ω k   are
weights, determined from the normal distribution of
length-at-age, k  standard deviations from the mean,
µ j  is the mean length of age class j fish, σ j  is the
standard deviation of length of age class j fish, and
L La1 , , ρ  are the von Bertalanffy growth parameters.

Let ( )φ ρL La1 , , denote the von Bertalanffy growth

function , so that ( )φ µ− =1
j j . Let

( ) jkjkjkj xi +=σδ+µφ− 1 , where i jk is an integer,

0 1≤ <xk  and δk  is the kth component of the vector
(-1, -0.5, -0.25, 0, 0.25, 0.5, 1) . Then

 (A1) ( ){ }s c x c xj k i jk i jk
k

jk jk
= − + +

=−
∑ ω 1 1

3

3
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where ( )ω k kw w w w w= + + +0 1 2 32 2 2 , w0 1= ,

( )w1
20 25 2= −exp . , ( )w2

205 2= −exp . , and

( )w3 10 2= −exp . .


