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SEAPODYM is a model developed initially for investigating spatial tuna population
dynamics under the influence of both fishing and environmental effects. The model is based
on advection-diffusion-reaction equations. The main features of this model are i) forcing by
environmental data (either observed or modeled), ii) prediction of both temporal and spatial
distribution of age-structured populations, iii) prediction of total catch and size frequency of
catch by fleet when fishing data (catch and effort) are available, iv) parameter optimization
based on fishing data assimilation techniques.

This modelling effort started in 1995 at the Secretariat of the Pacific Community in
Noumea, New Caledonia, under two consecutive EU-funded projects: SPR-TRAMP (1995-
2000) and PROCFISH (2002-2005). The model development also benefited of a grant from
the PFRP (Pelagic Fisheries Research Program) of the University of Hawaii, allowing the im-
plementation of irregular grids and initiating the work for parameter optimization (2004-05).
Since 2006, the development has continued within the MEMMS section (Marine Ecosystem
Modeling and Monitoring by Satellites) of the Spatial Oceanography Division of CLS, a sub-
sidiary of the French CNES and IFREMER Institutes. Collaboration with SPC continues,
with funding support from a new EU-funded SPC project, SCIFISH, as well as with the
PFRP through a second grant (2006-09) for the project ”‘Climate and Fishing Impacts on
the Spatial Population Dynamics of Tunas (Project no. 657425)”’.

An enhanced version of the model (SEAPODYM 2.0) is now ready for use. It includes
revised mechanisms due to changes in the modelling of mid-trophic organisms of the pelagic
ecosystem with several pelagic mid-trophic functional groups. Dynamics of tuna populations
have been also revised with expanded definitions of habitat indices, movements, and natural
mortality. The code for parameter optimization has been completed and tested.

Following a general introduction and a brief review of the main mechanisms used in the
model, this user’s manual provides the information needed to run numerical simulations
for tuna or tuna-like species, and the method to fit the model predictions to observations
by estimating model parameters, investigation of parameter observability, improving initial
conditions and the model functionality.

1Marine Ecosystems Modeling and Monitoring by Satellites, CLS, Satellite Oceanography Division. 8-10
rue Hermes, 31520 Ramonville, France

2Oceanic Fisheries Programme, Secretariat of the Pacific Community, BPA5 Noumea, New Caledonia
3Pelagic Fisheries Research Program, University of Hawaii at Manoa. 1000 Pope Road, Honolulu, HI

96822 United States
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Introduction

The Spatial Ecosystem and Population Dynamics model (SEAPODYM) model has been
continuously enhanced to provide a general framework allowing integration of biological and
ecological knowledge of tuna species, and potentially other oceanic top-predator species,
within a comprehensive description of the pelagic ecosystem. It has been upgraded to in-
clude more detailed relationships between the population dynamics and basic biological and
ecological functions, including a realistic representation of the vertical oceanic habitat, both
in terms of physical and foraging conditions. SEAPODYM is an age-structured population
model describing spatial and temporal dynamics of top predator species in a direct link
with forage (prey) biomass and environmental variability. The forage fields are predicted
by separate sub-model in which various mid-trophic level organisms are classified through
their dial migration pattern and the spatiotemporal transfer of energy from oceanic primary
productivity to the preys of tunas is described using allometric scaling equation and passive
transport of the biomass with oceanic waters. The environmental variables, which drive tuna
dynamics (temperature, currents, oxygen and primary production) are predicted by coupled
physical-biogeochemical models. The model also includes a rigorous mathematical parameter
estimation procedure using available catch and size frequency data.

Because the model is driven by the bio-physical environment of the ecosystem, it was
possible to reduce the number of parameters that describe the complete spatially-explicit
population dynamics of a species to twenty-one, i.e., a small number relative to the number
of variables described in the model. A few more parameters should be added to include
the growth function that is still provided by independent studies in this version. Other
parameters concern the description of fisheries (selectivity and catchability).

The model is parameterized through assimilation of commercial fisheries data, and op-
timization is carried out using maximum likelihood estimation approach. For parameter
optimization, we implemented adjoint methodology to obtain an exact, analytical evaluation
of the likelihood gradient. The approach to select the ”‘best parameter estimate”’ is based
on a series of computer experiments in order i) to determine model sensitivity with respect
to variable parameters and, hence, investigate their observability, ii) to estimate observable
parameters and their errors, and iii) to justify the reliability of found solution. The new
version of the model is fully detailed in recent papers (Lehodey et al., 2008; Senina et al.,
2008).

5
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Chapter 1

The model

1.1 Modelling approach

When considering the definition of an ecosystem, i.e., how assemblages of species are orga-
nized in space and time, and how they interact with each other and the physical environment,
modelling the ocean pelagic ecosystem is obviously a challenge that requires drastic simplifi-
cations. These simplifications need to be considered carefully in close relation with the level
of observation and knowledge that we have for each component of the system to be sure that
the model can be properly developed and parameterized and then evaluated by comparing
prediction to available observations. In addition, the model is focusing on the population
dynamics and the fisheries of exploited species as there is a special interest to provide a new
generation of modeling tools for the management of these species, taking into account not
only the impact of the fisheries but also the natural fluctuations of the populations in their
climate-driven ecosystem.

While the level of information for the physical and biogeochemical components is now
sufficient to make possible detailed three-dimensional realistic planetary scale simulations of
ocean physic and lower trophic (phytoplankton) level biology, it is clear that the information
for the intermediate trophic levels (micronekton) is a weak link. Organisms in these groups
that provide the forage of tuna and other oceanic top predators consist of macrozooplankton
and micronekton, typically crustaceans, fish, and cephalopods, with sizes in the range of 2-20
cm.

1.1.1 Mid-Trophic Level Model

The modelling of mid-trophic organisms of the pelagic ecosystem is a critical step in linking
the coupled physical-biogeochemical models to population dynamics of large pelagic preda-
tors. Modelling this component of the system then requires an approach as simple as possible
but that can be linked, however, to the other components without loosing the benefit of the
better knowledge and detailed modelling possibility they offer. Many of these mid-trophic

7
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species have optimized their behavior under the constraints of finding food in the productive
upper layers while avoiding predators as far as possible, i.e., migrating in the upper layers
after the sunset and leaving it during sunrise, so that vertical distributions and migrations
are finally structuring all the pelagic foodweb. It seems therefore appropriate to define in-
termediate trophic levels with several simple large functional groups with a dynamic linked
to the one provided by ocean-biogeochemical models.

We have developed a modelling approach with six different groups characterised by their
vertical behavior, i.e., occurence of diel migration between epipelagic, mesopelagic and bathy-
pelagic layers (Fig. 1.1). Parameterization of the dynamics of these components is based
on a temperature-linked time development relationship. Then, a simple energy transfer from
primary production is used, justified by the existence of constant slopes in log-log biomass
size spectrum relationships. Recruitment, ageing, mortality and passive transport with hori-
zontal currents, taking into account vertical behavior of organisms, are modeled by a system
of advection-diffusion-reaction equations. This part of the model is not detailed in this ver-
sion of the manual. A full description of the Mid-Trophic Model is provided in Lehodey et
al. (in press).

1.1.2 Tuna and tuna-like population model

Top predators in the marine pelagic ecosystem are essentially opportunistic omnivorous
predators. Their diets reflect both the faunal assemblage of the component of the ecosystem
that they explore and their aptitude to capture prey species at different periods of the day
(i.e., daytime, nightime, twilight hours). It seems that most of them are in the upper layer
during the night. But high sensory specialisation (e.g. olfaction in sharks, vision in bigeye
tuna, swordfish and cephalopods or echolocation in marine mammals), and morphological
and physiological adaptations (e.g., thermo-regulation) allow them also to exploit the dark
and colder deeper layers. The 3-layer ocean definition used for the mid-trophic (forage)
species seems to match particularly well with the known vertical behaviour of large predators
(Fig. 1.2).

Large pelagic predators are often exploited species for which there are detailed knowledge
on biology and physiology, population structure, ecology and fishing data. Thus, it is possible
to develop a detailed model of the spatial dynamics of these predator species.

The modeling approach for the tuna population dynamics has been first described in
Bertignac et al. (1998), and modified in Lehodey (2001), Lehodey et al. (2003). The enhanced
version presented in this document is described in Lehodey et al. (2008) and Senina et al.
(2008). Populations are age-structured and movements described with an advection-diffusion
equation. Diffusion is used to represent undirected random movement, i.e., kinesis, while
in contrast advection allows to describe directed movement in response to some external
stimulus, i.e., taxis. Here, the directed movement is following the gradient (slope) of a habitat
index (klinotaxis). Therefore, the movement of these top-predator species is modeled as a
combination of kinesis and klinotaxis.
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Figure 1.1: Daily vertical distribution patterns of the micronekton in the pelagic ecosystem:
1, epipelagic; 2, migrant mesopelagic; 3, non-migrant mesopelagic; 4, migrant bathy-pelagic;
5, highly-migrant bathypelagic; 6, non-migrant bathypelagic . The part of energy (E) trans-
ferred from primary production (PP) to intermediate trophic levels is redistributed (En’)
through the different components.
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Figure 1.2: Five typical vertical movement behaviors simulated using a 3-layer and 2-type
of prey pelagic system (adapted from Dagorn et al. 2000): 1- epipelagic predators (e.g.,
skipjack, marlins and sailfish); 2- predators moving between the surface and intermediate
layers during the day (e.g., yellowfin tuna); 3- predators mainly in the intermediate layer
during the day (e.g., albacore tuna); 4- predators moving between deep and intermediate
layer during the day (e.g., blue shark); 5- predators mainly in the deep layer during the day
(e.g., bigeye tuna and swordfish).
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The simulations are driven by a bio-physical environment predicted from a coupled ocean
physical-biogeochemical model. This new version of SEAPODYM includes expanded defini-
tions of habitat indices, movements, and natural mortality based on empirical evidences. A
thermal habitat of tuna species is derived from an individual heat budget model. The feeding
habitat is computed according to the accessibility of tuna predator cohorts to the different
vertically migrating and non-migrating micronekton (mid-trophic) functional groups. The
spawning habitat is based on temperature and the coincidence of spawning fish with pres-
ence or absence of predators and food for larvae. The successful larval recruitment is linked
to spawning stock biomass. Larvae drift with currents, while immature and adult tuna can
move of their own volition, in addition to being advected by currents. A food requirement
index is computed to adjust locally the natural mortality of cohorts based on food demand
and accessibility to available forage components. Together these mechanisms induce bottom-
up and top-down effects, and intra- (i.e. between cohorts) and inter-species interactions.
The model is now operational for running multi-species, multi-fisheries simulations, and the
structure of the model allows a validation from multiple data sources. However, running
multi-species simulations in optimization mode requires very high computer power and has
not been tested yet.

1.1.3 Model framework

The general scheme of the model and approach is presented on Fig. 3.1. The forcing for
the model are predicted fields of physical environmental data (temperature and currents)
and dissolved oxygen concentration, averaged by month over three depth layers: the surface
epipelagic layer, the sub-surface mesopelagic layer and the deep bathypelagic layer. The def-
inition of these layers is based on the euphotic depth (see Fig. 1.1). Primary production P
is vertically integrated and is given in units of mmol C m−2d−1. These bio-physical envi-
ronmental fields are used to describe the preferred habitat of the large pelagics for foraging
and spawning and to predict their temporal and spatial dynamics. Anthropogenic forcing
is represented by spatially-disaggregated fisheries effort data, grouped by gear type. Effort
data are used to parameterize fishing mortality and therefore predicted catch.

1.2 Underlying equations

The population of tuna (or other pelagic top predator) in SEAPODYM is age- and stage-
structured. Four life stages, larvae, juveniles and adults before and after maturity are modeled
differently. Let ks denotes the number of cohorts by stage and

∑
4 ks = K + 1 - the total

number of cohorts specified1. Let Na(t, x, y) denote the density of the cohort (age) a = 0, .., K
at time t ∈ (t0, tn) and position (x, y) ∈ Ω ∈ <2.

1Note that index K depends on the maximal age of the population and the temporal discretization of the
cohorts.
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The micronekton organisms serve as a forage for modeled predator population. They are
grouped into six classes Fc(t, x, y), c = 1, .., 6 (as shown on Fig. 1.1) by the common dial
migration pattern. Since they are predicted by the separate unit of the model and used here
a one of the forcing variables, we omit detailed description of the underlying model (see e.g.
Lehodey, 2001).

Let us denote vz = (uz(t, x, y), vz(t, x, y)), the vector of oceanic horizontal currents,
Tz(t, x, y) is the temperature, and Oz = O(t, x, y) is dissolved oxygen averaged through
vertical layers z = 0, 1, 2. The definition of the layers descends from diurnal migrations
exhibited by micronekton species through the water column (see Fig. 1.1) and their depths
are linked to euphotic depth (see Section ?? for more details).

The transport of tuna population can be described by continuous advection-diffusion-
reaction (ADR) equations describing. For brevity, we use gradient operator ∇ = (∂x, ∂y)

T,
divergence operator of a vector field div(v) = ∂xu + ∂yv and ∆ = div grad for Laplacian of
scalar field of population density. The state variables Na as well as environmental forcing
variables are determined at point (x, y) and time t (hereafter we will omit the notations of
space and time).

The ADR system describing dynamics of age-structured tuna population is:

∂tNa =

{
−div(Nav0) + δ∆Na −maNa + Sa, a = 0, .., (kL + kJ − 1);
−div(Naṽ +NaVa) + div(Da∇Na)− (ma + fa)Na + Sa, a = (kL + kJ), ..., K.

(1.1)

where δ is constant diffusion coefficient of larvae and juveniles, ṽ denotes weighted average
(by the accessibility to depth layer, see section 1.3 for details) of oceanic currents through all
layers, Va is vector of directed velocity of adult tuna at age a, which is proportional to the
gradient of the habitat index (see section 1.5), diffusion rates Da = Da(x, y) = D(a, T,O, F )
are functions of age and environmental factors, ma = ma(x, y) are natural mortality and
fa are fishing mortality by adult cohorts (mortality functions are detailed in 1.6). Terms Sa
represent sources of the new population density to corresponding variable and include both
survivals from younger age classes as well as the effects of spawning and recruitment.

The system (1.1) is completed by Neumann boundary conditions describing imperme-
ability of the domain bounds ∂Ω:

n · v
∣∣∣
x∈∂Ω

= n · ∇Na

∣∣∣
x∈∂Ω

= 0 (1.2)

According to these conditions no additional source of biomass and no loss are possible within
the domain when recruitment and mortality are absent. It implies the requirement on the
domain definition to be naturally closed for considered tuna species.

Since age discretization in time for most of the cohorts is different from the time step
chosen to numerically solve the system (1.1-1.2), ageing equations are added in order to imply
transition from one age group to another. Hence, the system of continuous ADR equations
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is supplemented by the discrete equations describing the following. At each time step tuna
cohort comprises a number of individuals remaining in the age class at a current time step
plus recruits from younger age, minus the number of individuals which pass to the older age
group. Thus, we have simple relationships:

N t+1
a = pn,a−1N

t
a−1 + (1− pn,a)N t

a, a = 1, ..., K (1.3)

The survival coefficients pn,a determine the rates of decay of the density due to natural,
predation and fishing mortality depending on the time spent in corresponding age. They are
relative values between 0 and 1, such that

pn,a =
e−n(ma+fa)

nP
i=1

e−i(ma+fa)
(1.4)

where n is the ratio between time step in population age structure and the time step of
discretization in numerical approximation of (1.1-1.3), i.e., ∆a = n∆t(month). Note that
if n = 1, i.e., age discretization coincides with time discretization, then p1,a = 1 and the
corresponding equation, i.e., Eq. 1.4 simplifies to N t+1

1 = N t
0. Note also that the fishing

mortality fa = 0 for unexploited part of population.
The new spawning density of the tuna population is the product of two functions, the

Beverton-Holt relationship giving the dependence on the density of mature adult tuna and
HS, the spawning habitat index (see Eq. 2.10):

S0 =
RN

1 + bN
·HS, (1.5)

Note that setting parameter b = 0 (in parameter file, see chapter 2) gives Malthusian growth
of population density although still restricted by the habitat conditions.

1.3 Habitats and indices

Physical and biogeochemical conditions influence fish population dynamics through changes
in spawning conditions, habitat suitability, and distributions of food resources, thus inducing
changes in fish movement behavior, reproduction and mortality. Environmental data are
used in SEAPODYM to functionally characterize habitat of the population depending on
its thermal biochemical and forage preferences. Generally there are three types of habitat in
the model: 1) thermal, 2) spawning and 3) feeding. The thermal habitat is deduced using
a size/weight-based relationship by age. The spawning habitat depends on thermal habitat
and includes also the food and predation factor. Feeding habitat is proportional to the prey
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abundance with the proportionality coefficients being accessibility to the layer where the
prey components live. Using these definitions we construct the habitat suitability indices
for each cohort as the habitat preferences vary with age. These indices are then used to
control population dynamical processes (both spatial and temporal) such as movement to
the feeding or spawning grounds, natural mortality and predation.

1.3.1 Fish thermal habitat

At the scale of a population, we consider that the thermal habitat can be represented by a
Gaussian distribution with an average temperature linked to the size-dependent body tem-
perature at steady state, and by a standard error of the distribution linked to the thermal
inertia of the fish. Here, we assume that for a given species, there is an optimal intrinsic
temperature (T ∗i ) that remains constant, whatever the age/size, and that this temperature
is a target temperature for any individual of the species (e.g., due to genetic and physiologi-
cal adaptation during species evolution). It follows from a tuna heat budget model (Holland
et al., 1992) that when becoming larger, the fish will have to search for colder habitat tem-
perature to compensate their increasing body temperature at steady state. But they will
have also larger temperature range due to their increasing with size l thermal inertia. There-
fore we define the population size-dependent thermal habitat by a Gaussian distribution
N(T ∗(l), σ(l)):

HT (l) = e
− (T−T∗(l))2

2σ2(l) (1.6)

with linearly decreasing with size function T ∗(l) and linearly increasing with weight function
σ(l) (Fig. 1.3).

Let each cohort a be defined by the mean fork-length at age la and mean weight at age
wa. Considering the age discretization of the population our definition of the species thermal
habitat implies that the maximal average temperature occurs at age 0, i.e., spawning. We
assume that the species intrinsic temperature T ∗i is equivalent to the average temperature
of the first cohort, i.e., that it is defined as an optimal spawning temperature (T ∗i = T ∗0 ).
Hence, for a given cohort a ∈ (0, K), the optimal temperature is:

T ∗a = T ∗(la) = T ∗0 + (T ∗K − T ∗0 )
la
lK

(1.7)

and the associated std. dev.:

σa = σ0 + (σK − σ0)
wa
wK

(1.8)



Seapodym User Manual 15

Skipjack

0.0

0.5

1.0

5 15 25oC

In
de

x
1st cohort 2yr
4 yr last cohort

Bigeye

0.0

0.5

1.0

5 15 25oC

In
de

x

1st cohort 2yr
4 yr last cohort

 

Figure 1.3: Change in temperature function used to define the habitat temperature of the
population based on a Gaussian distribution with linearly decreasing with size average tem-
perature and increasing with weight standard deviation. Example of parameterization used
for skipjack and bigeye. The average size of the latest cohort for these two species is 80.15 cm
and 175.08 cm respectively, with corresponding weights of 10.61 kg and 113.93 kg. Redrawn
from Lehodey et al. (2008).
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However, for practical reason to facilitate parameter estimation and also due to usually
low sensitivity of the model to σ0 parameter (in the absence of data on the larvae distribu-
tion), the last equation has been modified to:

σa = σT + δ
wa
wK

(1.9)

where σT is allowed to be estimated during function minimization procedure while δ can be
fixed at different values (can be added later to the list of control parameters as well).

1.3.2 Spawning habitat

The spawning habitat HS is used to constrain larval production and mortality of larvae
cohort(s). This index and larvae dynamics are defined to represent four mechanisms that are
assumed to control the survival of larvae and the subsequent recruitment:

• changes in the spatial extent of the spawning habitat with temperature;

• coincidence of spawning with presence or absence of food for larvae (micro-zooplankton,
that is approximated by primary production), i.e., the match/mismatch mechanism
proposed by Cushing (1975);

• coincidence of spawning with presence or absence of predators of larvae (that are the
micronektonic organisms, i.e., the prey of adults);

• redistribution of larvae by the oceanic circulation that can create retention of larvae
in favorable areas with lower natural mortality or conversely move the larvae in unfa-
vorable zones where the natural mortality will be higher.

Therefore, spawning habitat index is a function of surface layer temperature T0, micronek-
ton biomass in the surface layer F0 and primary production converted to the wet weight of
zooplankton Pww. So, if ocean primary production P is given in mmolC/m2, after conversion
to the wet weight of zooplankton species the units of Pww become g/m2.

Since larvae predation is likely maximal during daytime and twilight periods, the biomass
of predator of larvae F0 is computed as the sum of mid-trophic biomass in the epipelagic
layer during daytime (the daylength) and epi- and migrant-pelagic mid-trophic biomass
during the sunrise and sunset periods. Practically, a period of 2 hours is used, i.e., 2/24th of
the night-time epipelagic biomass.

Let Λ = EPww/F0 denote the ratio between food for larvae and the tuna forage that
is considered as the potential predator for larvae. The constant E is the energy transfer
coefficient.

The spawning habitat is described by the following function:

HS = φ(Λ) ·HT0 ,
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where φ(Λ) is the nonlinear saturation function determined in [0,1] interval:

φ(Λ) =
Λ

α + Λ
(1.10)

The curvature parameter α is unknown and included in the list of parameters to be estimated
from the data. The amplitude of the trade-off effect between food and predator of larvae
increases with α. If α = 0, only temperature has an effect. The dependence on temperature
is described by a Gaussian function as detailed in section 2.3.1 above:

HT0 = e
− (T0−T

∗
0 )2

2σ2
0 (1.11)

where the parameters T ∗0 and σ0 are the optimal temperature and width of tolerance interval
(standard deviation) in the Gaussian for the larvae stage.

1.3.3 Feeding habitat

The feeding habitat index expresses how a particular place and time is favorable for feeding
on prey components, based on the accessibility to each of them considering both the physical
ability of the predator (different by species and by age) and the physical conditions in the
water layer inhabited by the forage component at different time of the day. Thus, although
SEAPODYM model is two-dimensional in space, the third dimension is included in feeding
habitat through vertical distribution of the forage components, i.e at each spatial position
(x, y) the habitat HF is the sum of abundances of preys living in the water column weighted
by accessibility coefficients to each z depth layer:

HF =
∑
z

Θz

(
Fzz + τ

∑
k 6=z

Fzk + (1− τ)
∑
k 6=z

Fkz

)
(1.12)

where τ denotes the fraction (time) of the daylight in a day, and Fzz are the elements of
the forage matrix with diagonal elements being z-resident (non-migrant) forage class, and
off-diagonal elements are the migrants (as defined in 2.1.2, see also Fig. 1.1). The first
index shows the layer the forage stays during the day, the second denotes for the night layer
correspondingly:

F =

 F11 0 0
F21 F22 0
F31 F32 F33


The accessibilities Θz include certain environmental conditions as limiting factors to

access the layer. Two factors, temperature and oxygen, are considered to be essential for
defining the extents of tuna’s vertical habitat and hence the quality of the habitat in terms
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of amount of food available. It is known that low levels of oxygen make the tuna habitat
unfavorable (see, e.g. Brill, 1994), so the influence of the oxygen on the habitat quality can
be described by a sigmoid function:

Ψ(Oz) =
1

1 + eγ(Oz−Ô)

with the critical value Ô being variable for different species (see Fig. 1.4).

The temperature factor is included in the form of thermal habitat (see section 2.3.1),
hence making the accessibility coefficient dependent on age:

Θz,a = Ψ(Oz) ·HT,a (1.13)

Thus, the feeding habitat index HF,a is computed for all adult cohorts, at both immature
(young, a = kL + kJ + 1, .., kY ) and mature (a = kY + 1, .., K) stages. This habitat plays
main role in the movements of the cohorts, representing the displacement toward favorable
feeding grounds and is used to define movement index (see Movement dynamics section).
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Figure 1.4: Dependence of feeding habitat on oxygen level. Parameters for skipjack and
bigeye tunas were obtained with help of optimization procedure using catch and catch at
size data.
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Predator’s diet. The definition of the habitat index allows us to compute the diet of
the predators (by age, time and space). Note that Eq. 1.12 can be rewritten as HF,a =∑

dn Fdn (τΘd,a + (1− τ)Θn,a), i.e. as the sum forage components weighted by their average
(over day and night) accessibilities to tunas. This enables computing the relative accessibil-
ities. Let’s denote the accessibility to forage component (the expression in parenthesis) as
Θc,a i.e.,

ϑc,a =
Θc,a∑
n Θc,a

(1.14)

can be described as the time the predator spends searching for the n-th forage component.
Hence, the product ϑc,aFc represents the portion of the c-th forage in the predator’s diet.
This approach is illustrated on Fig 1.5 for two tuna species - Pacific skipjack Katsuwonus
pelamis and bigeye Thunnus obesus. Given the level of potential details predicted by the
model, data were aggregated through a few regions and averaged through all young (a =
kL + kJ + 1, .., kY ) and adult (a = kY + 1, .., K) cohorts. Overall, there are limited changes
for skipjack considering regions or life stages. This species is mainly limited to the epipelagic
layer by its thermal habitat and consequently its diet is dominated by epipelagic group
(≈ 2/3). For bigeye, the diet is more variable between young and adult fish and regions. The
diet of young fish is dominated by non-migrant mesopelagic species in the west, by migrant-
mesopelagic in the north-east, and by equal proportions of both migrant and non-migrant
mesopelagic species in the east. When they are adult, bigeye have a larger thermal range
and can access to all forage components except in the coldest northeast region where they
cannot access the meso- and bathy-pelagic layer.

1.4 Habitat indices.

To avoid unexpected dynamical behavior of the model, for example obtaining negative dif-
fusion parameters, we need to constrain the habitat indices, in other words, scale them in
the bounded space. For simplicity we scale them within [0, 1] segment. As it is seen from
Eqs. 1.10 and 1.11 the spawning index is scaled by default. To constrain the feeding and
consequently the movement index we use trigonometric scaling:

1.5 Movement dynamics

The model simulates passive transport of tuna larvae and juveniles by oceanic currents in
the surface (epipelagic) layer, while young and adult tuna can direct their own movements
and swim at a speed proportional to their size and the gradient of adult habitat index, in
addition to being advected by currents.
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Figure 1.5: Diet compositions of skipjack (top) and bigeye (bottom). Predictions are aggre-
gated over 10 years (1995-2004) in sub-regions following a stratification based on fishing data
used for stock assessment analyses (Hampton et al 2006). There are two pie-plots by region
for young immature (left) and adult mature (right) fish.
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These movements are modelled with two components, namely random dispersal and
directed displacements, described by diffusion and advective term in the equations (2) re-
spectively. For both types of movements, the displacement per time unit is obviously directly
dependent on the size of the individuals. Therefore, the movement is linked to a maximum
sustainable speed Vmax,a expressed in Body Lengths per second.

As pointed out earlier, in the case of larvae and juveniles, the advection is due to oceanic
currents only. An ’age of autonomous movement’ is defined from which fish (cohorts) can
swim by their own volition (if set to 0, the first cohort with autonomous movements is the first
one following the juvenile phase). In this latter case, as in conventional chemotaxis models
(see Keller and Segel, 1971, Czaran, 1998, Turchin, 1998) velocity field (Va) is proportional
to the gradient of the movement stimuli, represented here by the quality of adult habitat.

Va = χa

(
∂I2,a

∂x
,
∂I2,a

∂y

)T

(1.15)

where the taxis activity constant χa is proportional to Vmax,a which is, in turn, inversely re-

lated to the average size at age (Malte et al., 2004) following Vmax,a = Vm

(
1− η l

lK

)
, where

the parameter η = 0.1 implies small negative slope.

In addition, we can expect that individuals will tend to stay longer in the presence
of favorable conditions (low diffusion) but will want to escape quickly from unfavorable
habitats (high diffusion), so that diffusion values should be linked to habitat condition. We
define maximal diffusion coefficient in the null (extremely unfavorable) habitat according
to the formula of two-dimensional mean square dispersal (see, e.g. Turchin, 1998), namely
Dmax = R2/4t, or if we assume that during time t individual will cover the maximal distance
moving with its maximal sustainable speed Vmax, we have as upper estimate of diffusion
coefficient Dmax = V 2

maxt/4. Thus, in each habitat, a given upper value is reduced according
to non-linear relationship with the habitat index I2,a and linear relationship with its gradient,
∇I2,a:

Da = Dmax

(
1− I2,a

c+ I2,a

)
(1− ρ |∇I2,a|) (1.16)

where c is the coefficient of variability of fish diffusion rate with habitat index. The expres-
sion (1− ρ |∇I2,a|) with ρ < 1 balances diffusive and advective movements to ensure that
maximal displacement due to both diffusion and taxis does not exceed the distance which
fish can cover with its maximal sustainable speed.

Movement index The movement index, denoted Ia (previously called adult habitat in-
dex) must navigate the cohorts throughout the year, i.e. has to include seasonality of the
migrations for those cohorts which exhibit such behavior due to environmental variability.
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Thus, while for young immature cohorts the habitat can be described by the feeding index,
it must enable the movement of mature fish toward favorable spawning grounds due to the
changes of daylight length. The gradient of the day length ∂td can serve as a trigger switch-
ing tuna behavior from foraging to searching for spawning grounds. One of the hypothesis
of how this search occurs assumes that adult tuna tend to direct their movements to find
a place with environmental conditions as those occurring during their birth (see e.g., Cury,
1994), i.e., in the model the conditions defined by the spawning habitat index. Based on such
assumption, we reproduce the seasonal change between feeding and spawning migrations by
switching the movement index that drives the movement of fish from the feeding habitat
to the spawning habitat using a threshold in the rate of increase of the day length as a
triggering effect. The equation used for a = kY + 1, .., K, is:

Ia =
HF,a

1 + eκ(∂td−Ĝ)
+

HS

1 + eκ(Ĝ−∂td)
, (1.17)

where Ĝ is a triggering value of the daylight gradient and κ is large constant (≈ 103) pro-
ducing abrupt but continuous shift between feeding and spawning indexes.

This switch occurs earlier for fish that are in higher latitudes, and therefore far from their
spawning grounds in warm waters (Fig. 1.6). Note that in low latitudes, the gradient of the
day-length is too low to have any effect and adult habitat is always driven by the feeding
habitat, leading in that case to opportunistic reproduction.

used to constrain both diffusion and advection terms in the modeling of fish movements
and

1.6 Mortality

m0 = m0(x, y) = f(T0, P, F ) is larval (age zero) natural mortality rate, a function of wa-
ter temperature at surface layer T0, primary production P and forage density F ; m1,2 =
m1,2(x, y) = f(T0, N) are juvenile (ages 1, 2) natural mortality rates dependent on surface
layer temperature and total adult tuna density.

Average natural mortality by age (in months, τ) in the population is described as the
sum of two functions. An exponentially decreasing function with age represents the mortality
during the early life history (mainly due to starvation and predation). An increasing function
with age characterizes natural mortality in the adult phase, i.e., mainly senescence and
diseases:

mS(τ) = m̄S

(
1 + eβS(τ−A)

)−1
(1.18)

mP (τ) = m̄P e
−τβP (1.19)
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Figure 1.6: Example of seasonal cycles in gradient of day length at different latitudes in
the North hemisphere. With a threshold set above 0.02 hours per day, the adult habitat
that constrains the movement of fish will switch from feeding habitat to spawning habitat
at the end of December for mature fish at latitude 60, and one month later at latitude 30.
Movement of fish at latitude below 20 remains always driven by the feeding habitat.
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where m̄S and m̄P are maximal senescence and predation mortalities, βS and βP are slope
coefficients, and A is the age at which mS(A) = m̄S/2. The sum of the two components gives
the total natural mortality-at-age coefficient:

m(τ) = mS(τ) +mP (τ) (1.20)

To this average coefficient-at-age, it is possible to add local variability linked to environ-
mental conditions, expressed by any index I standardized between 0 and 1, e.g.:

M = m(τ)(1− I + ε) (1.21)

For larvae, the spawning habitat index is used, while two other indices are defined for juvenile
and adult stages.

Juvenile index. The juvenile index IJ combines the thermal habitat function and a func-
tion which accounts for predation by adults, either from the same species (cannibalism) or
other tuna species (in the case of multi species simulations):

IJP =

(
1− 〈N〉

h+ 〈N〉

)
· Φ(T0) (1.22)

where 〈N〉 =
K∑
a=1

Na, i.e., is the total size of adult portion of the population, and the unknown

parameter h determines the predation intensity in the habitat depending on the total number
of adults tuna being present locally.

Food Requirement index. Though the feeding habitat is used to constrain the movement
of fish there is not a direct link between the available biomass of prey (mid-trophic groups)
and the food requirement of the predators (tuna). In this version of the model, a food
requirement index IFR,a is used to adjust locally the natural mortality of the species, based
on intra- and inter-species competition for food. We define the adult food requirement index
as the ratio between available forage in the habitat and food required by adult tuna at age
a:

IFR,a =

∑
n Fn

ψ
∑

n rwaNaϑa,n

where r is the food ration of an individual, i.e., proportion of tuna weight wa, ψ is a parameter
responsible for consumption of forage by other predators and ϑ is the relative accessibility
coefficient (see Eq. 1.14), i.e.,
Finally, in order to scale this index between 0 and 1 we use the transformation:
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IFR,a =
1

1 + IνFR,a
(1.23)

Thus, this index will vary from 0 when the requirement by the cohort is a high contribu-
tion to a total forage requirement that is much higher than available forage, to 1 when this
requirement is a low contribution to a total forage requirement that is much lower than
available forage.

An application with two tuna species (skipjack and bigeye) is used to illustrate how
this index provides a relative measure of food competition between cohorts of all predator
species explicitly represented in the model ( 1.7). The parameter (epsilon) was set to 0.5,
which means that mortality defined by equation above is lower when food requirement index
IFR is above 0.5 and higher when IFR is below 0.5.

For skipjack, there is a slightly lower biomass in the case of the two-species simulation in
both WCPO and EPO. For bigeye however, the decrease is much higher with a 57 % biomass
reduction. The very large biomass of skipjack has logically a strong impact on bigeye cohorts
through food competition, especially in the WCPO which is the core habitat of skipjack.
When computing the mortality coefficients over the two east and west regions by age resulting
from mortality equation, we obtain effectively higher average mortality rates in the case of
the multi-species simulation. But these curves also indicate that this interaction occurs more
strongly between the oldest cohorts of skipjack and the youngest cohorts of bigeye. In growing
older, bigeye access deep forage components that are not available for skipjack (Fig. 1.5)
and thus the mortality effect due to food competition gradually decreases.

Fishing mortality. The model includes a description of multiple fisheries. For each fishery,
the actual fishing effort is used to predict catch of tuna species by cell, time step and by age
class of species. The fishing mortality, for a given cell and at a given time step, is proportional
to the sum of fishing efforts in the cell, the catchability coefficients of the corresponding
fisheries and the selectivity coefficients for the gear and age (size) considered. The fishing
mortality (f), added to the natural mortality (M), gives the total mortality rate (Z).

Each fishery has a single catchability coefficient by species. Catchability coefficients are
corrected to the surface of the cell. Since this coefficient is constant it is recommended to
define homogeneous fisheries. A first obvious criterion for example is the fishing gear, but
it may be also necessary to consider some large spatial-scale stratification, different fishing
strategies, or different periods of time associated to large changes in the fishing strategy or
gear technology.

fa = sumfsf,aqfEf , a = 1, ..., K. (1.24)
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Figure 1.7: Time series of biomass of adult skipjack and bigeye comparing single (thin curves)
vs. multiple (thick curves) species simulations in the western-central (WCPO) Pacific Ocean
(i.e., west of 150W), and corresponding average and standard errors of mortality by age mod-
ified by the food requirement index IFR for skipjack and bigeye. Thin curves and grey shaded
area are for single species simulation and dotted curves are for multi-species simulation.
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where qf is the catchability coefficient of fishery f , Ef is observed fishing effort and sf,a
is fishery-specific selectivity, which is specified as either sigmoid function (type I selectivity
function) of age or asymmetric Gaussian (type II):

sf,a =



(
1 + e−ςf (la−l̂f )

)−1

, type I

e
−

(la−l̂f )2

σsf , if la ≤ l̂, type II,

µf + (1− µf )e
−

(la−l̂f )2

σsf , if la > l̂, type II,

(1.25)

Total mortality by life stage. Mortalities of larvae and juveniles can vary locally around
the average coefficient-at-age value, i.e., if I < 0.5 mortality rate increases and the opposite
is true for I > 0.5. Adult mortality, in contrast, can only increase depending on the food
requirement index IFR,a that determines the level of food deficit for each age group. Such
penalty leads to highest local mortality rates for young tunas. The coefficient qf is catchability
of fishery f , Ef is observed fishing effort and sf,a is fleet-specific selectivity, which is specified
as either sigmoid function (type I selectivity function) of age or asymmetric Gaussian (type
II):
With added effects of fishing and environmental variability expressed through habitat index
functions, the local mortality rates of each cohort are:

m0 = M(τ0)(1− I0 + ε) (1.26)

mk = M(τk)(1− I1 + ε), k = 1, 2 (1.27)

Ma = M(τa)
(
1 + e2IFR,a−1

)
+
∑
f

sf,aqfEf , a = 1, ..., K. (1.28)

Mortalities of larvae and juveniles can vary in both directions, i.e., if I < 0.5 mortality rate
increases and the opposite is true for I > 0.5. Adult mortality, in contrast, can only increase
depending on the food requirement index IFR,a that determines the level of food deficit for
each age group. Such penalty leads to highest local mortality rates for young tunas.
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Chapter 2

Running the model

2.1 Getting started

System requirements SEAPODYM is a Linux application however it is possible also
to compile and run it under Windows with Cygwin installed. When application is used for
simulation runs only, namely, for predicting population dynamics with fixed (presumably
best known) parameters, there are no special requirements for the computer configuration.
However, if parameter estimation is intended, to run the application efficiently, one needs to
have an access to a machine with 64-bit CPU 2GHz and higher, and at least 8Gb of RAM
on board. The latter is the key requirement because the backward (adjoint) differentiation
method stores all intermediate variables needed for exact evaluation of a cost function gra-
dient in the operational memory. In case if there is not enough RAM available, the program
will dump all temporary data on a hard disk (in files cmpdiff.tmp and gradfil.tmp) that can
significantly slow down the overall parameter estimation process.

2.1.1 Installations

This manual is for users who want to run application with the code and executable of the
program that are provided. If modification of some part of the model code is desirable
it is advised to contact the developer’s team since changes in the code can interfere with
computation of the gradient. Compilation of the source code requires to install two additional
libraries listed below.

Autodif The version of ADModel Builder1 pre-compiled with gcc3.4.6 for Linux 64-bit
architecture machine. It can be downloaded from the following address:
http://code.google.com/p/admb-project/downloads/list

Simply uncompress downloaded archive to your local disk and specify the proper path
in Makefile.

1Note, the program will not use ADModel Builder itself, but only Autodif libraries libado and libadt.

29
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libxml2 To edit and store all model parameters as well as program configuration we use text-
based xml parameter file. Reading this files requires libxml2 library. If not installed
you can download and build library from address
ftp://xmlsoft.org/libxml2

After libraries are installed, create the source directory, place the code there, edit pro-
vided Makefile.i64 (see Appendix B) to be sure that you have correct paths, then compile
SEAPODYM application typing the command:

make -f Makefile.i64

If there are no conflicts in libraries and compiler versions, all paths are specified cor-
rectly, the executable seapodym coupled64 will be built in the working directory. Now
you are ready to setup the running directory, prepare the input forcing files, fishing data
and configure the model and application parameters.

2.1.2 Running directory

We recommend the following structure and naming for your running directory:

/run-OGCMname-domain-resolution/

./fisheries/species-name/

./forage/

./init/

./mask.txt

./topo.txt

./OGCM-data DYM files

i.e. all fishing data files (see 2.1.4) will stored in the fisheries directory, forage directory
will contain predicted micronekton distributions, in the folder init you will store the files
with initial distributions ( 2.2), mask.txt and topo.txt are the files with land mask and
topographic indices ( 2.1.3), the rest are DYM files with physical and biogeochemical forcing
( 2.1.4).

2.1.3 Defining the domain of simulation

The first step in preparing the model simulation is to define the model domain, which is the
rectangular geographic area assumed to cover the habitat of the modeled species. The domain
is discretized with help of a grid, with the size of cells reasonable to resolve studied dynamical
features. To build the grid for the chosen geographic area we suggest to use the software
called GMB. Using ETOPO2 (2-minute gridded global relief data, see information on http:

ftp://xmlsoft.org/libxml2
http://www.ngdc.noaa.gov/mgg/global
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//www.ngdc.noaa.gov/mgg/global) topography maps GMB allows building regular and
stretched grids and creating land masks and masks for arbitrary chosen depth level. For
more details on how to use GMB see Readme.txt file that is provided with .jar executable.
Notice that for the moment we consider regular grids only, i.e., orthogonal grids with constant
resolution in latitude and longitude, the mixed-resolution grids implementation is envisaged
for the next release of the SEAPODYM application with parameter estimation.

Below is an example of domain, grid and mask configuration, which was used in the anal-
ysis of Pacific skipjack population dynamics. This species is highly migratory and inhabits
Pacific oceanic waters from West to East and appears in longline catches in higher latitudes
up to 45N and 40S. The model of micronekton populations was run on a more extended
toward higher latitudes domain, that is why the chosen coordinates (see parfile in Appendix
C) are:

latitudeMin value =-54.0 most southern latitude (from +90N to -90S)
latitudeMax value =64.0 most northern latitude (from +90N to -90S)
longitudeMin value =90.5 most western longitude (from 0 to 360)
longitudeMax value =291.5 most eastern longitude (from 0 to 360)
nb layer= 3 number of vertical layers
deltaX value =120 resolution in nautical miles on the x (latitude) axis
deltaY value =120 resolution in nautical miles on the y (longitude) axis

Now, using GMB extract this area with ETOPO topographic data (see Fig ??), build the
two-degree grid and a create a land mask (GMB user’s menu activates successively: 1) load
map; 2) build grid; 3) create mask, etc.). Note that land mask created from topography data
can be different from the one being used in OGCM or NPZD models, that is why it is rec-
ommended to use the data mask (mask, extracted from oceanographic and biogeochemical
data) as initial one (use menu File/Load mask..). Addition of two more layer masks, i.e. with
the depth defining epipelagic and mesopelagic layers, can be done in GMB as well (use menu
Mask/Mask properties.. to set the depth and mask flag, then clicking ”‘create mask”’ will
add another layer with specified properties) in case if depth of the layer is considered to be
constant, however, for the definition of variable layer depths a bit more complex procedure
must be taken (see below). Important step to be taken before saving the mask file is to mask
existing near-border cells which will cause the biomass leak in the finite-difference approxi-
mation scheme of ADR equation. Leak occurs when one computational cell is surrounded by
three land cells (or if the ocean cells create one-cell channel), so it makes it problematic to
create reflecting boundary condition. The GMB software filters such boundary cells in one
click. Finally, the mask is saved by GMB into simple text file with the table of numbers,
masking land by 0 and ocean (computational) cells by 1, 2 and 3 etc. according to the num-
ber of vertical layers specified for the simulation (see Fig. reffig:domain).

As described in Chapter 1 (see 1.1.1), in the model of micronekton we define six mid-

http://www.ngdc.noaa.gov/mgg/global
http://www.ngdc.noaa.gov/mgg/global
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trophic classes distinguished by their diel migration pattern, which provides vertical strati-
fication of these species habitat. It is assumed that euphotic depth zeu (the depth at which
light intensity falls to 1% of the value at the surface, for the method of how to calculate it see,
for example, Morel and Berthon, 1989 is crucial in such stratification. Hence, the integration
of physical and biogeochemical data must be done using euphotic depth (see next section),
but also, to avoid changes in the borders of computational area for deeper layers (due to
dynamic nature of euphotic depth) a 3-layer mask with fixed depths is computed as follows:

• The distribution of average and standard deviation of Zeu is computed for all the time
series

• A first test is used to set Zeu to the mean + 2 std. dev. if Zeu is above this value

• The number of vertical layers in each cell, as based on the euphotic depth and the
topography (i.e., the maximal depth Zmax in the cell), is allocated as the following:

• if Zmax ∈
[
0, Z̄eu + 2sd

]
there is only one layer

• if Zmax ∈
[
Z̄eu + 2sd, Y × (Z̄eu + 2sd)

]
there are two layers

• if Zmax > Y × (Z̄eu + 2sd) there are three layers

with Z̄eu the mean euphotic depth and sd its standard deviation, and Y the number of time
Zeu is used to define the boundary between the 2nd and 3rd layers.

2.1.4 Configuring the input forcing data set

The next step is to prepare all forcing data in appropriate formats. As it is seen from the
Fig. 3.1, running the model requires multiple input data such as physical and biogeochemical
forcing, biomass of mid-trophic groups and fishing data (i.e. catch, effort and eventually size
frequency of catch). Most of the files used by SEAPODYM are binary files of the format .dym
(see Appendix), which can be viewed with another software with GUI called SeapodymView.
Notice that the next release of SEAPODYM application and SeapodymView will work with
oceanographic data stored in NetCDF files. Files containing sparse matrices (such as with
fishing data) are written in ASCII format (see below).

Physical and biogeochemical data

The environmental data set to run a simulation includes temperature (oC), u and v com-
ponents of currents (m s−1) for physical fields and primary productivity (mmol C or N
m−2 day−1), dissolved oxygen concentration (ml l−1) and euphotic depth for biogeochem-
ical fields. Primary production is vertically integrated while temperature and currents are
averaged in the three layers using their definition related to the euphotic depth.
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Figure 2.1: Computational domain with 3-layer mask and 2 degree grid (black color - land,
dark gray - one vertical layer, light gray - two vertical layers, white - three vertical layers.

For three vertical layers, there are nine files with physical oceanographic data, three files
with dissolved oxygen data and one for the primary production. Each file contains the mask
and domain information, which should correspond to the model configuration. In addition,
monthly climatological files should be computed from available time series to be used during
the spin-up and forecast phases. The paths to all these files, together with the mask and
output directory, are provided in the section ’Model INPUT-OUPUT’ in the parameter file
(see Appendix C).

Mid-trophic level potential biomass

The modeling of mid-trophic groups (i.e., micronekton) is done separately with the same
input data set (temperature, currents and primary production). A simulation of mid-trophic
levels produces six files with predicted biomass (Fbiom *.dym) in g m−2 for epipelagic,
mesopelagic, bathypelagic, migrant-mesopelagic, migrant-bathypelagic and highly migrant-
bathypelagic groups. Climatological files are also necessary for spin-up simulation phase.
Notice that the following naming must be obeyed.

/forage/

./Fbiom epi.dym

./Fbiom meso.dym

./Fbiom mmeso.dym
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./Fbiom bathy.dym

./Fbiom mbathy.dym

./Fbiom hmbathy.dym

./mclFbiom epi.dym/

./mclFbiom meso.dym

./mclFbiom mmeso.dym

./mclFbiom bathy.dym

./mclFbiom mbathy.dym

./mclFbiom hmbathy.dym

The path to the folder should be provided in the ’INPUT-OUTPUT’ section of the pa-
rameter file (tag strdir forage). Parameter file also includes a section with the parameters
used to run the mid-trophic levels simulation called ’FORAGE MODEL PARAMETERS’,
however those parameters will not be used during optimization procedure or uncoupled sim-
ulation of tuna population dynamics.

Fishing data

All fishing data files should be in a folder given by strdir fisheries tag in the parfile.
Besides, the names of the file with original fisheries data and effort data redistributed to
the model resolution (to compute the fishing mortality) must be given explicitly. The list of
files is provided in the parameter file (cf Appendix C) in the section ’FISHERY DATA AND
PARAMETERS’.

Catch and effort. While the fishing effort needs to be applied at the spatial resolution
of the grid to compute fishing mortality, the likelihood function uses predicted and observed
catch at the resolution of the original data. In an ideal case where resolution of data and
model is the same, the program only needs raw fishing data file with all operating fisheries
and their effort E and catch C for single or multiple, N species with date and geographic
position. The file in ASCII format has the following structure:

Nb of fisheries

Nb of records for fishery f1 Nb recs f2 ...

fishery year month day gear latC lonC resolution E C1 ... CN

where latC and lonC are latitude and longitude of the center of a region and resolution is
coded as follows:

code 0 1 4 5 F T
resolution 10x10 1x1 4x10 5x5 5x10 10x20

Since fishing data are often given at different spatial resolutions and we need to apply fishing
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effort at the model resolution to account for fishing mortality correctly, it is better to prepare
fishing data files before simulation using GMB, which will take into account the grid and
land mask information within the data redistribution procedure. Output fishing data files
produced in GMB have binary format, with extension .bin. Note that if the model resolution
coincides with the fishing data resolution there is no need to prepare .bin files, a single ASCII
file with all fisheries data will be enough.

Size frequencies. It is strongly recommended to use size frequencies data by fishery for
parameter estimation, however optimization Data for different fisheries are usually sampled
quarterly, however the spatial resolution can vary with time and fishery. In the header of LF
file for SEAPODYM we list all unique regions which were used in data sampling. The file
format is the following:

Nb of regions Nb of fisheries Nb of records

1 lonE lonW latS latN coordinates of region 1
2 ... coordinates of region 2
...

Number of size bins Minimal size in the sample bin length

year quarter month fishery region LF[1] .. LF[Nbins]

2.1.5 Parameter set-up

See the example parameter file with setup of parameters for South Pacific albacore tuna
population in Appendix.

Simulation parameters The first section is devoted to the parameters that specify di-
mensions of the model variables (parameters latitudeMin, latitudeMax, longitudeMin,
longitudeMax for domain size and save first yr, save last yr for the time period of sim-
ulation) and resolution of the model discretization, i.e. grid (deltaX, deltaY, in naut. mi.
units) and time step (deltaT, in days)). Parameter iterationNumber gives pseudo time
step for ADI numerical solver. If the flag tuna spinup is set to ’0’ then spinup will be
skipped, but in this case initial distributions should be provided in the strdir init directory
(see below).

deltaT value=30 resolution in days of computational time step

Be careful specifying all paths to the data directories correctly and verify that all neces-
sary files are provided. The main run directory is specified in strdir.

In summary, before starting a simulation you must prepare:
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1. Land mask, where the land is marked as ’0’ and ocean layers elsewhere (see above).
The mask can be produced with GMB software (jar file and etopo2 maps are provided
as utility for SEAPODYM).

2. Eventually, a topographic index can be used with current version to add a topographical
component in the habitat definition, e.g., to restrict movements of adult cohorts to the
areas with very shallow topography. Provide the path to the file in the parameter file
(cf appendix). This file can also be computed for the model grid using GMB.

3. Prey fields, i.e., the predicted mid-trophic potential biomass of the 6 functional groups
that are taken into account as an external forcing. The program will search precom-
puted with seapodym forage sub-model (executable is provided within the package)
forage distributions in the directory specified in strdir forage. If this field is empty
or even not existing then the files should be in the main run directory strdir. There
must be six files (epi-, meso-, bathy-, mmeso-, mbathy- and hmbathypelagic) for the
time series of the simulation and corresponding climatological files (monthly means
over time period of simulation).

4. Fishing data files (see above). They are into the directory specified by strdir fisheries.

5. Files with time series of modeled physical data such as currents and temperature, one
file per vertical layer. The time step of the data should correspond to the time step of
the model numerical scheme (deltaT)

6. Biogeochemical data - primary production and oxygen. Notice that if the oxygen data
are available only as climatology (monthly or quarterly means) then the flag type oxy
should be set to 0.

7. Climatological files for all environmental data that will be used during spinup in order
to generate initial conditions.

The model output will be saved in sub-directory strdir output. Thus, the run directory
has a simple structure: ./oceanographic input
All model parameters in parfile have the same names as in the code. The correspondence
between coded names and model notations are shown in Table 2.1. You can start working
with initial guess parameters and their bounds given in the table below. In the parfile the
parameter that has the tag variable can be estimated. If the tag < use = “true”> the
parameter will be used as the control variable in optimization, otherwise, it will be static,
i.e. fixed at its initial guess value. Notice that in the current version all parameters of the
MTL sub-model are static.

To be sure that the parfile will be read correctly, verify that all tags have opening < and
closing / > brackets.
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Table 2.1: Control variables of the constrained optimization problem, imposed lower (θ) and
upper (θ) boundaries and initial guess values (θ0). Example is provided for pacific skipjack
(from Senina et al., 2008.

θ Coded name Description θ θ θ0

m̄p Mp mean max maximal mortality rate due to predation, 0 1 0.5
βp Mp mean exp slope coefficient in predation mortality, 0 0.5 0.057
m̄s Ms mean max maximal mortality rate due to senescence, 0 1 0.5
βs Ms mean slope slope coefficient in senescence mortality, -0.5 0 -0.167
A Ms mean half threshold age (in month) of tuna for senescence

mortality,
20 40 31.0

ε M mean range variability of tuna mortality with habitat quality, 0 1 0.5
σ0 a sst spawning standard deviation in the temperature function of

I0,
2 4 3.5

T ?0 b sst spawning optimal surface layer temperature for juveniles, 28.5 31.5 30
α alpha spawning half saturation constant for the food to predator

ratio in the spawning index,
0 5.0 0.1

σT a sst habitat standard deviation in temperature function of I2,a, 1 3 2
T ?K b sst habitat optimal temperature for oldest tuna, 25 28 26.0
γ a oxy habitat slope coefficient in the function of oxygen, -10 0 −8

Ô b oxy habitat threshold value of dissolved oxygen, 0.1 3.0 1.0
c c diff habitat coefficient of diffusion variability with habitat in-

dex,
0 1 0.1

Vm MSS species maximal sustainable speed (in body length) of
tuna,

0 2 1.0

R nb recruitment maximal number of larvae at large spawning
biomass of adults,

0 2 0.5

b a adult spawning slope coefficient in Beverton-Holt function, 0 2 1.5
qf q sp fishery catchability of the fishery f , Eq. 1.25 0 0.1 0.001
ςf s slope

(s sp fishery)
steepness of selectivity function, type I, 0 2.0 0.41

l̂f length threshold
(s sp fishery)

threshold fish length, 20 70 42

µf right asymptote
(s sp fishery)

parameter of non-symmetric Gaussian function for
selectivity

0 0.5 0.002



38 Seapodym User Manual

2.2 First numerical experiment

To get some help on the command options for running SEAPODYM, use the command line:
> seapodym –help.
The information provided will be:

Usage: seapodym [options] parfile
Options:
-h, –help Print this message and exit.
-H, –hessian Compute Hessian matrix.
-p, –projection Compute 2D-projection of the likelihood on a grid specified in parfile.
-s, –simulation Run simulation without optimization.
-sa[=FLAG] Make sensitivity analysis. By default[=0] sensitivity function takes model pre-
dictions only.
–sensitivity-analysis[=FLAG] If FLAG=1 the sensitivity function takes both predictions and
observations.
-t[=FLAG] Perform identical (by default, or FLAG=0) twin experiment.
–twin-experiment=[FLAG] If FLAG=1 the noise will be added to the artificial data.
-v, –version Print version number and exit.

It can be useful before to start numerical experiments with data assimilation, to test a
simulation with all parameters values fixed to their best guess estimates. In that case the
option -s can be used when starting the program, and all parameter values will be fixed even
if their tag in the parfile are < use = “true”>.

2.3 Analyzing model outputs

A simulation produces different outputs. First, the .dym files with spatial distribution over
the time series of simulation. They can be visualized and analyzed using the software
SeapodymView. In the next version these files will be provided with the NetCDF format.

Biomass (in gWWm−2) aggregated over different life stages of the species:
- sp larve.dym // Biomass of larvae (from age 0 to one month)
- sp juvnl.dym // Biomass of juveniles (from age 1 month to 3 month)
- sp recru.dym // Biomass at age of recruitment
- sp young.dym // Biomass of young (from age 2 quarter to age at first maturity)
- sp adult.dym // Biomass of adults (from age mature to age max)
- sp totbm.dym // Total biomass (from age 2 quarter to age max)

Total predicted and observed catch of the species:
- sp Cobs.dym // unit ?
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- sp Cpred.dym // unit ?

Movement components of the species:
- sp u tot.dym // Total zonal velocity of the species (sum of current u and fish advection)
in ms−1 naut. mi/d ??
- sp v tot.dym // Total meridional velocity of the species (sum of current v and fish advec-
tion) in m, s−1 ?
- sp diffusion.dym // Diffusion component of the species in m−2, s−1 ?

The other files are in a ASCII format (.txt) and provide aggregated data over domain or
regions if such regions are defined in the last section ’AGGREGATION ZONES’ of the pa-
rameter file (cf appendix).

- SumDym.txt // time series of population biomass by life stage, predicted versus observed
catches, fishing effort and CPUEs
- SumQArea.txt // regionally aggregated biomass (this is used to compare with MFCL out-
puts)
- sp Spatial Corr.txt // spatial correlations between predicted and observed catch and catch
rates
- sp LF Q sum.txt // Predicted and observed quarterly length frequencies summarized by
fishery and region

If the simulation is runnning in optimization mode, the additional ’statistics.txt’ ASCII
file is produced. This file and all other ASCII files can be easily used with different softwares
(e.g. EXCEL, R, ...) for producing plots to help in the analysis of the simulation experiment
(see ex. in last chapter).
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Chapter 3

Numerical experiments and data
assimilation

3.1 Nonlinear function minimization

Numerical approximations of the system of equations and discrete ageing relationships define
the simulation model of population dynamics. The partial derivatives of ADRs are approx-
imated by second order finite differences with upwind differencing of advective terms (see
discretization scheme in Sibert et al., 1999). Boundary conditions are implemented in the dis-
cretization scheme. The complex boundary of the domain is presented by the land mask. The
resulting algebraic problem is solved using the alternate direction implicit (ADI) method,
with a time step of ∆t = 1.

3.2 Initialization

Initial conditions are generated by the following “spin-up” process: starting from uniform zero
spatial distribution, the population density is modeled using a climatological environment
(generated over the period of the time series used) during first 3∆τ0 +K∆τa time steps. Every
time step, a new larval source is computed using the temperature only (i.e., SJ0 = RΦ(T0)).
The duration of the spin-up is set up to match the total lifespan of the species population,
so that the density of each age class can be computed at the end of the climatological run.
After spin-up, the simulation continues with actual forcing fields for another 2 years in order
to reduce the influence of initial climatological forcing. Final distributions are saved for later
use as initial conditions for optimization experiments. As the initial distributions play an
important role in parameter estimation process, we then repeated the same procedure several
times re-generating initial state of the model using the optimized parameters.

41
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3.3 Fisheries Data assimilation

Data assimilation is based on fishing data from multiple fisheries. To maintain the time of
computation at a reasonable level, it is necessary to find a balance between the number of
fisheries, the size of the domain, the spatial and temporal resolution, and the extension of
the time series used in the optimization experiment. Since each fishery is characterized in
the model by one constant catchability coefficient and a selectivity function, it is also impor-
tant to aggregate homogeneous fishery data. Typically, for tuna species, monthly spatially
distributed data on fishing are available for effort Etfij (in days or nb hooks) and catch Cobs

tfij

(in weight). Size frequency data is usually aggregated by fishery and large area, e.g., 10x10
deg. squares.

As an example, the study for Pacific skipjack tuna in Senina et al. (2008) used six gen-
eralized gear types or “fisheries” defined by unique values of the “catchability coefficient”,
qf with f = 1, 2, . . . , 6 corresponding to four WCPO (PLSUB, PLTRO, WPSASS, WP-
SUNA) and two EPO fisheries (EPSASS and EPSUNA), while seasonal size composition of
the catch was available for each fishery aggregated over 7 spatial regions. In addition, the
computational domain was restricted to Ω = {x ∈ (99◦E, 69◦W ), y ∈ (45◦N, 39◦S)} since
this is the region where skipjack catches have been recorded during the 1950-2005 period
(see Fig. ??), and a coarse grid with ∆x = ∆y = 120 Nmi (nautical miles) was used in these
first experiments.

3.3.1 Model predictions

The predicted catch, Cpred
tfij , at time t for fishery f is computed in the model using observed

fishing effort Etfij at location (i, j) by

Cpred
tfij = qfEtfij

K∑
a=1

sfawaNaij∆x∆y,

where wa is the mean weight of fish in the a-th cohort.
The predicted proportion at age a in the catch at time t for fishery f in region r is

Qpred
tfar =

sfa
∑
i,j∈r

EfijNaij∆x∆y

K∑
a=1

sfa
∑
i,j∈r

EfijNaij∆x∆y

.

3.4 Maximal likelihood approach

SEAPODYM explicitly describes spatial dynamics of pelagic fish populations influenced
not only by intrinsic population dynamics processes, but also by extrinsic environmental



Seapodym User Manual 43

constructing cost function according to data distribution

preliminary sensitivity analysis

Optimization:

Primary production (NPZD)

Temperature (OGCM)

Currents (OGCM)

Oxygen (Levitus database)

Environmental forcing

  tropical and 
  sub−tropical gears

  WCPO associated and 
  unassociated fleets 

  EPO associated and 
  unassociated fleets 

   epi−pelagic

Biological input

   migrant and non−migrant meso−pelagic

   migrant, non−migrant, highly migratory bathypelagic

6 forage components:

Pole−and−line effort:

Purse seine effort:

Anthropogenic forcing

minimization, parameter estimation and errors 

Predictions: 
tuna biomass distributions

Estimates of model parameters

m
od

el
 i
m

p
ro

ve
m

en
t

Age−structured TADR tuna population model

Juveniles sub−model
   spawning, foraging, passive transport,

   survival and mortality

Adult tuna sub−model
   recruitment, foraging, passive and active

  transport, seasonal migrations, ageing,
  natural and fishing mortality

length frequencies
catch

Management
applications

catch
length freqiencies

Observations:
  (6 skipjack fisheries)

Figure 3.1: General scheme of the model with optimization approach.
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variability. Predictions of the model strongly depend on environmental forcing which is taken
by the model as the input. However, in order to have confidence in the model predictions,
particularly the adequacy of the population dynamical responses to environmental variability,
we need to combine simulations with quantitative optimization (see the lower part of Fig.
3.1) and to express how well the model describes the observational data.

3.4.1 Likelihood functions

We use the maximum likelihood method to estimate model parameters θk that would allow
the model predictions to approach observations.

Catch likelihood components Different functions can be used to represent the distri-
bution of the catch data. One frequently used is Poisson distribution. An example is given
in the skipjack application in Senina et al. (2008) with the WCPO purse seine fleet that is
targetting this species. However, when fishing data contain many zeros, as for the skipjack
catch data from Eastern Pacific Ocean (EPO) purse seine fleets that target mostly yellowfin
tuna, it may be more appropriate to use other distributions, e.g., a negative binomial distri-
bution with zero inflation.
This yields the following likelihood components with Poisson distribution:

L1

(
θ|Cobs

)
=
∏
tfij

Cpred
tfij

Cobstfije−C
pred
tfij

Cobs
tfij!

, f = 1, 2, 3, 4; (3.1)

and for negative binomial distribution with zero inflation:

L2

(
θ|Cobs

)
=



∏
tfij

(
pf + (1− pf )

(
βf

1+βf

)βfCpredtfij
1−pf

)
, if Cobs

tfij = 0,

∏
tfij

(
(1− pf )

Γ

 
Cobstfij+

βfC
pred
tfij

1−pf

!

Γ

 
βfC

pred
tfij

1−pf

!
Cobstfij !

(
βf

1+βf

)βfCpredtfij
1−pf

(
1

1+βf

)Cobstfij

)
, if Cobs

tfij > 0,

f = 5, 6.(3.2)

where the parameters βf and pf , are the negative binomial parameters (showing how much
variance exceeds expected value) and probability of getting a null observation, respectively.
Both are estimated in the optimization process.

Length frequencies likelihood components. We assume that fish lengths at catch are
normally distributed, which gives the following contribution from length frequency data to
the negative log-likelihood:
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− L3

(
θ|Qobs

)
=

1

2σ2
Q

T∑
t=1

6∑
f=1

K∑
a=1

7∑
r=1

(
Qpred
tfar −Q

obs
tfar

)2

, (3.3)

where the proportion at age a in the catch computed from the observed length-frequency

data is Qobs
tfar =

Nobs
tflrP

lNtflr
, l ∈

[
la, la

)
. N obs

tflr is the number of fish of length l in region r that

belongs to the cohort of age a. The variance σ2
Q is assumed to be a constant value (1.5 cm).

The negative log-likelihood function, L¯ = − ln(L), to be minimized is thus the sum of the
three components described above, i.e.,

L¯ = − lnL1

(
θ|Cobs

)
− lnL2

(
θ|Cobs

)
− L3

(
θ|Qobs

)
. (3.4)

Instead of setting penalties to the boundaries of θ, we chose to perform a constrained
minimization through parameter scaling (see e.g., Bard, 1974; Vallino, 2000). The latter
implies that the optimization routine operates in the unbounded parametric space that is

mapped to the bounded one with the transformation θk = θk +
(
θ̄k − θk

) (
1 + sin

πθ′k
2

)
, i.e.,

variable θ′k can vary from −∞ to ∞ while θk remains within the imposed bounds.

3.5 Numerical experiments

Despite the minimum number of parameters used in the model to describe the full spatial
population dynamics of a species, the model will likely have difficulties to converge quickly
toward the best solution. Preliminary optimization experiments can reveal different problems,
especially if there are bad or too sparse fishing data.

First, it is recommended to reduce the influence of initial conditions (spatial distributions of
cohorts produced by the model with initial guess parameters) on the results of minimization
procedure. this can be done by skipping the first predictions in the likelihood computation.
For the skipjack application (Inna et al. 2008), the first 6-month predictions in each opti-
mization experiment were excluded from the likelihood function (parameter nb step to skip
value=”6”). Three optimization experiments were conducted also, that spanned three differ-
ent time periods: 1980-1990 (E1), 1990-2005 (E2), and the total 25 year range from 1980 to
2005 (E3) to determine the extent to which the estimated parameters depend on data from
different periods and different initial conditions, and consequently, how model predictions
change as a result of assimilating data over different time periods.

Environmental forcing variables have a strong impact on the results and can produce bi-
ases if they are not realistic enough. Continuing with our skipjack example, we noticed that
the coarse spatial resolution (2 deg) of the grid being used and maybe some other problems
(e.g., lack of ice model) produced a bias in the predicted seasonal peak of temperature in
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the forcing field for the Kuroshio region. This temperature variability is however of primor-
dial importance to determine seasonal population migrations in this area (Nihira, 1996).
Therefore with this configuration SEAPODYM was not adequately describing the seasonal
skipjack migration through the Kuroshio extension and attempts to assimilate data within
this geographic area would bias parameters of habitat indices. Consequently, the sub-tropical
pole-and-line fleet catch data were excluded from the likelihood calculation (but not from
the computation of fishing mortality) and the catchability coefficient (fishing mortality) for
this fleet was fixed.

Correlation between different parameters is a classical issue. For example, the simulta-
neous estimation of the parameters of the larval recruitment on one side and the natural
and fishing mortality functions on the other side can lead to biased estimates of the total
population size. Namely, if we try to estimate simultaneously parameters R, b, βP and βS in
the skipjack application, the minimization procedure tends to increase the total stock and
also the computational time (i.e., the number of iterations) increases by a factor of more
than three compared to experiments in which R is fixed. Such drastic increase of the number
of iterations due to the release of one more parameter is an indication of strong correlation
with other parameters. Considering the importance of the estimation the mortality rate for
each cohort given its functional form over ages, and taking into account availability of more
information for the adult cohorts in the fishing data than for larvae stage, we have chosen to
fix the recruitment parameters. But we reduced also the number of mortality function pa-
rameters by fixing the coefficient of variability with habitat index ε at its guessed value 0.5,
because sensitivity analysis (see below) indicated that the model configuration was barely
sensitive to this parameter.

3.6 Sensitivity analyses

Sensitivity analyses are a useful approach to reveal which parameters can be estimated from
available data and which can not. If model predictions are insensitive to some parameters,
it is unlikely that they will be determined uniquely from available observations and should,
therefore, be removed from the optimization. Two types of sensitivity analyses can be per-
formed with this version of SEAPODYM.

Sensitivity to parameters. The first type of analysis examines how the predictions of
the model are sensitive to its parameters. For this purpose we simply need to construct a
function of the model solution, which represents model predictions (see, e.g., Worley, 1991).
Then, the measures of sensitivity can be computed using precise gradients obtained from
adjoint calculations. Since two types of data are assimilated within the model, i.e., catch and
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length-frequencies, we construct the following functions:

R1 =
∑
tfij

(
Cpred
tfij

)2

, R2 =
∑
tfar

(
Qpred
tfar

)2

, r=1,...,7. (3.5)

Then we define two measures of relative sensitivity ξ1(θ0
k) and ξ2(θ0

k) for corresponding
model predictions and each initial guess parameter θ0

k as follows:

ξ1(θ0
k) =

1

R1

∂R1

∂θ0
i

, ξ2(θ0
k) =

1

R2

∂R2

∂θ0
i

. (3.6)

. To run this type of analysis, use the option -sa[0] in the command line to execute SEAPODYM.

Sensitivity to objective function. The second type of sensitivity analysis examines
whether the objective function (which incorporates both predicted and observed data) is
sensitive to model parameters. We compare values of likelihood at some found minimum θ†

to those evaluated at boundaries of parameter space (Vallino, 2000). We define two further
measures of relative sensitivity:

ξ3(θ†k) =
L (̄θ† + δθ̄k · ek)− L (̄θ†)

L (̄θ†)
, ξ4(θ†k) =

L (̄θ† − δθk · ek)− L (̄θ†)

L (̄θ†)
(3.7)

where δθ̄k = θ̄k − θ†k, δθk = θ†k − θk and ek is a standard basis vector with 1 in the k-th
element and 0 elsewhere.

. To run this type of analysis, use the option -sa[1] in the command line to execute SEAPODYM.

For both -sa[ ] options, outputs are directly shown on the terminal screen at the end of the
simulation and can be recorded in a text file if needed to produce a table (Table 3.1) or a plot
(e.g., Fig 3.2). It is recommended to run multiple sensitity tests from experiments with dif-
ferent initial conditions, time series of simulation, and estimated values of parameters. This
approach will help in detecting persistent patterns, e.g., parameters that show consistenly
low or conversely really high sensitivity, and hopefully the reason of such patterns. If the
problem cannot be solved, e.g., by increasing the period of simulation to include new data or
testing a better environmental forcing data set, then the parameter(s) with low sensitivity
should be fixed to their best guess-estimate and removed from the optimization.

Sensitivity analyses only give a tentative representation of observable and non-observable
parameters unless the entire parameter space is explored thoroughly. practically, performing
exhaustive sensitivity analysis, i.e., exploring entire likelihood hyper-surface in n-dimensional
parametric space is impossible. Consequently, some non-estimable parameters are likely un-
recognized, but large uncertainties obtained from the error analysis (see below) are good
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Table 3.1: Example of outputs from the sensitivity analyses.

N parameter relative sensitivity
1 Mp mean exp(0) 8.72181
2 Ms mean max(0) -1.11762
3 a sst spawning(0) 2.54945 e-10
4 b sst spawning(0) 0.00656738
5 a sst habitat(0) 3.39733e-18
6 b oxy habitat(0) -1.0208
7 MSS species(0) -0.070417
8 nb recruitment(0) 0.0047095
9 ...
10 ...

E1, SA−1
E1, SA−2
E2, SA−1
E2, SA−2
E3, SA−1
E3, SA−2
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Figure 3.2: Log-scaled measures of sensitivity obtained for estimated parameters from three
different experiments E1, E2 and E3. The values below dashed line correspond to less then
5% sensitivity of either predictions (SA-1, i.e., max|ξ1, ξ2|) or objective function (SA-2,
max|ξ3, ξ4|) to corresponding parameter. Redrawn from Senina et al. (2008).
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indicators of poorly determined parameters. Unfortunately, one cannot prove that minima
found in these experiments are not local minima. It is possible, however, to evaluate the
reliability of the solutions by conducting so-called “identical twin experiments”.

3.7 Identical twin experiments

Demonstrating that a solution found by numerical optimization is a global solution and not a
local minimum is a difficult and well-known problem in all non-linear optimization problems
and data assimilation. In order to verify that both the model and the method allow to esti-
mate chosen parameters using the available amount of observations, it is possible to conduct
“identical twin experiments”. These tests consist in estimating parameters from artificial
data series constructed from predictions given by the model. If optimization works well with
the model and experiment set-up, then after sufficient perturbation of optimal parameters
we should be able to retrieve them, because they determine known a-priori solution repre-
sented in the artificial data series. Twin experiments conducted for the skipjack application
have shown that the control parameters were successfully recovered with small relative errors
ε < 0.001 due to the computer round-off error. The evolution of the parameters during mini-
mization process can be plotted like in the figure 3.3 to illustrate how quickly the parameters
were recovered, and which parameters are the most difficult to be correctly estimated.

. To run a twin-experiment:
- create an artificial fishing data set from a given model configuration, with or without adding
noise to the data, and use it as a new fishing data set.
- change the initial values of the parameters to be estimated in the parameter file.
- use the option -t[0] in the command line to execute SEAPODYM.
- use the statistics.out output file to check the result and produce plots (e.g., Fig. 3.3).

3.8 2D projection of likelihood function

Sometimes it is useful to explore the likelihood function visually, looking at different projec-
tions over the parameter space. It gives the clue what the sensitivity of a certain parameter
is, whether the boundaries of the parameter should be modified, how the imposed penalty
functions change the shape of the likelihood etc. Plotting the cost function over a couple of
variable parameters is also a simple way to visualize the localization of found solution. For
example, the likelihood function can have multiple minima and the likelihood projection plot
can reveal the local minimum problem and help to navigate the minimization experiments
further. The numerical instability problems, or the high-mode nonlinearity of model solu-
tions, and/or noisy observations can result in abrupt, spiky surfaces of the cost function and
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Figure 3.3: Evolution of control parameters during twin data experiment conducted for the
artificial data simulated with E2 parameter set. Parameters are grouped by their sensitivities
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hence impede the convergence of the minimization method. Figure 3.4 illustrates three ex-
amples of the the cost function being (a) ideal case of quadratic shape, (b) two local minima
and (c) extremely non-linear surface due to high diffusion rates instability problem.

All you have to do for computing and further plotting the 2D projections of likelihood
function is to add the following lines to the parfile:

<hyperspace projection>

<variables nb="2"/>

<var1 name="alpha spawning" nsteps="5" />

<var2 name="nb recruitment" nsteps="5" />

</hyperspace projection>

and run the program with the command

seapodym -p parfile.xml

In the example above the program will split the parameter plane bounded by values
specified by min/max tags into 25 grid cells and run simulations to evaluate the likelihood
with gridded parameters.

3.9 Parameter estimates, variance and errors

Unfortunately, there is no simple way to evaluate the uniqueness of the estimated parame-
ters in nonlinear problems especially for ecosystem models due to their extreme complexity,
high dimension of the objective functional and scarcity of available observations (Robinson
and Lermusiaux, 2002, Vallino, 2000). Different experiments using different time periods and
data sets will produce differences in the parameter estimates. The approach of perturbing
the model parameters and restarting the experiment allows to check that the model has con-
verged towards the minimum of the experiment, but it is not possible to assert that found
solutions are not local minima. However considering the dimension of the minimization prob-
lem and the computer time to perform one experiment, it is also unrealistic to envisage an
exhaustive study that would allow us to conclude that computed solutions are global.

We can, however, determine whether the estimated parameters were well determined at the
minima detected by minimization routine. For this, wee need to compute the variance of the
estimated parameters from the inverse of the Hessian matrix, i.e., C = H−1 (Bard, 1974),
where H = ∂2L¯

∂θi∂θj
, i, j = 1, 2, ..., n is the Hessian matrix evaluated at the minimum of the

negative log likelihood function. The diagonal elements of C provide estimates of the variance
of the optimal parameters. The Hessian matrix is approximated with central finite difference
using first derivatives exactly evaluated by adjoint calculations. From the variance, standard



52 Seapodym User Manual

16397100
16446839
16496578
16546317
16596056
16645794
16695533
16745272
16795011
16844750
16894489
16944228
16993967
17043706
17093444
17143183
17192922
17242661
17292400

L
(sum)

25.5 26.0 26.5 27.0 27.5

10

15

20

(26.2,24.9)

Likelihood function projection

b_sst_spawning

b_
ss

t_
ha

bi
ta

t

Figure 3.4: Likelihood projection examples



Seapodym User Manual 53

deviation can be calculated for estimated parameters, allowing to check the amount of un-
certainty on these etimates.

Correlation coefficients between pairs of estimated parameters can also be calculated from
the error-covariance matrix. This is useful to identify problems in the optimization approach
and eventually to define new experiments trying to estimate the correlated parameteres sep-
arately.

. To compute the Hessian matrix:
- use the option -H in the command line to execute SEAPODYM.
- use the statistics.out output file to check the results and produce plots or tables.
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Chapter 4

Visualization of model predictions.

Spatial distributions. SeapodymView software For rapid access when writing or
reading data during SEAPODYM simulations, a special binary format (using IEEE float)
was defined and is identified by the extension ¡.dym¿. A DYM file is composed with a header
and the series of 2-dimensional matrices representing the spatial distribution of the vari-
able in a chronological order, each matrix being read from north to south and east to west.
SeapodymView is a visualization software (developed in JAVA) allowing to display .dym
format data with related options and information, and proposes several overlay options
(Fig. 4.1): Circles and velocity Components based on dym files; polygons or E.E.Z. bound-
aries, individual tracks and fishing data (ASCII files). There are also several tools to manip-
ulate the data, produce simple computation and export data and images. SeapodymView is
provided with a separate documentation. Note that a new version of the software is under
development that will be based on NetCDF format.

Time series. R routines During simulation run the program computes aggregated biomass
and catches and stores predicted time series (together with observed ones) into ASCII files
(see list of files and their contents in 3.3). To plot these time series there provided the set of
R routines.

It is important and very often helpful to compare the predictions made by different
models, especially if they utilize conceptually different approaches. One such model which
is used to estimate tuna stock for management applications is Multifan-CL, age-structured
regional-based statistical stock assessment model which uses the fisheries and tag recaptures
data to estimate the parameters and fit the model trajectories.

In order to write the model output to be compared with MFCL regional predictions,
one need to specify the same regional structure in AGGREGATION ZONES section of the
parameter file. In Appendix C see an example of regions for albacore analysis. Since for
some species the only available length frequencies data are the ones being used in MFCL
analysis, the earlier version of the code used these regions for reading and computing length
frequencies. With the new fine resolution dataset the regional definition through parameter

55
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Figure 4.1: SeapodymView visualization software
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file became redundant, however the code still uses the same variables and data containers,
so if one reads the fine resolution size data from file file frq data then, for example, the
variable nb region will be reassigned to the number of unique regions in the data. Hence, for
Seapodym and MFCL outputs comparison one need do the following:

• set tag frq likelihood value = 0

• set tag flex regstruc value = 0

• specify number of regions and spatial stratification in accordance with MFCL defini-
tions
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Appendix A

Model variables and parameters

A.1 Selected notations

N Symbol Description Units
1 Ω, x, y 2d model domain with complex boundary and its coordinates degrees
2 z vertical layers (1) 0-100m, (2) 100-400m and (3) 400-1000m m

Environmental data
3 vz vector (u, v) of horizontal currents, averaged through each ver-

tical layer (GCM modeled data)
nmi/mo

4 Tz temperature, averaged through each layer z, (GCM data) ◦C
5 Oz concentration of dissolved oxygen, averaged through each ver-

tical layer (Levitus database)
ml/l

6 P primary production, averaged through 0-400m depth (ob-
tained from GCM-NPZD coupled model)

mmolCm−2mo−1

ADR coupled model variables
7 Fn density of n-th forage component (food for tunas) g/m2

8 Jk density of juvenile age class k = 0, 1, 2 of tuna population g/m2

9 Na density of adult age class a = 1, .., K of tuna population g/m2

Environmental(habitat) indices
10 Θa,n accessibility of tuna cohort a to n-th forage vertical habitat
11 I0 spawning or larvae’s habitat index
12 I1 juvenile’s habitat index
13 I2,a adult’s (feeding, movement and seasonal migrations) habitat

index
Advection-diffusion-reaction parameters

14 Va vector of velocity of each tuna cohort density nmi/mo
15 Da diffusion coefficient for each tuna cohort nmi2/mo
16 mS tuna senescence mortality mo−1

17 mP tuna predation mortality mo−1

18 mF tuna fishing mortality mo−1

19 sf,a selectivity functions for fishery f and age of tuna a
Optimization variables

20 Cf total monthly tuna catch by fishery f 103 tones
21 Qf , r proportion of length frequencies for fishery f and region r
22 L¯ total negative likelihood function
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A.2 SEAPODYM parfile
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parfile.xml

<?xml version="1.0"?>

<!-- check http://www.w3.org/TR/2004/REC-xml-20040204 for current xml specifications -->

<par version="1.0">

<!--==================== -->

<!--SIMULATION PARAMETERS-->

<!--==================== -->

<latitudeMin value="-54.0"/>

<latitudeMax value="4.0"/>

<longitudeMin value="130.5"/>

<longitudeMax value="288.5"/>

<nb_layer value="3"/>

<deltaX value="120"/>

<deltaY value="120"/>

<deltaT value="30"/>

<iterationNumber value="8"/>

<tuna_spinup value="0"/>

<save_first_yr value="1980"/>

<save_last_yr value="2000"/>

<nb_yr_forecast value="0"/>

<nb_step_to_skip value="12"/>

<!--==================== -->

<!--LIKELIHOOD PARAMETERS-->

<!--==================== -->

<!--type of data in the likelihood: 0 - cpue, 1 - catch -->

<data_type value="1"/>

<total_likelihood value=""/>

<!--likelihood types: 1 - concentrated, 2 - log-normal, 3 - poisson, 4 - negative binomial, 5 - zero-inflated negbin, 6 - truncated poisson -->

<!--can be different for each fishery (see below the fishery codes) -->

<likelihood_types>

<alb> 3 </alb>

</likelihood_types>

<nb_fishery value="1"/>

<list_fishery_name>L10</list_fishery_name>

<!--Mask for fishery data usage: 0 - do not take into account-->

<mask_fishery_sp>

<alb>1</alb>

</mask_fishery_sp>

<mask_fishery_likelihood>

<alb>1</alb>

</mask_fishery_likelihood>

<likelihood_parameters>

<variables use=""/>

<L10 alb=""/>

</likelihood_parameters>

<prob_zero>

<L10 alb=""/>

</prob_zero>

-1-

Figure A.1: Example xml parfile
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parfile.xml

<likelihood_type value="1"/>

<!--length frequencies likelihood: 0 - do not take into account, 1 - account-->

<frq_likelihood alb="0"/>

<frq_likelihood_weight alb="0.015"/>

<!--================= -->

<!--MODEL INPUT-OUTPUT-->

<!--================= -->

<!-- DataFiles -->

<!-- Working Directory -->

<strdir value="run-pfrp-ncep-sp/"/>

<str_file_mask value="Mask_2deg_3L_SP.txt"/>

<str_file_topo value="topo_2deg_SP_50m.txt"/>

<strdir_forage value="forage/"/>

<strdir_fisheries value="fisheries/"/>

<!--type of oxygen data: 0 for seasonal climatology, 1 for time series-->

<type_oxy value="1"/>

<strfile_pp value="PP_PFRP_NCEP_SP_1948_2003.dym"/>

<strfile_u layer0="U_PFRP_NCEP_SP_L1_1948_2003.dym" layer1="U_PFRP_NCEP_SP_L2_1948_2003.dym"

layer2="U_PFRP_NCEP_SP_L3_1948_2003.dym"/>

<strfile_v layer0="V_PFRP_NCEP_SP_L1_1948_2003.dym" layer1="V_PFRP_NCEP_SP_L2_1948_2003.dym"

layer2="V_PFRP_NCEP_SP_L3_1948_2003.dym"/>

<strfile_t layer0="T_PFRP_NCEP_SP_L1_1948_2003.dym" layer1="T_PFRP_NCEP_SP_L2_1948_2003.dym"

layer2="T_PFRP_NCEP_SP_L3_1948_2003.dym"/>

<strfile_oxy layer0="O_PFRP_NCEP_SP_L1_1948_2003.dym" layer1=

"O_PFRP_NCEP_SP_L2_1948_2003.dym" layer2="O_PFRP_NCEP_SP_L3_1948_2003.dym"/>

<strfile_pp_clm value="mclPP_PFRP_NCEP_SP_1980.dym"/>

<strfile_u_clm layer0="mclU_PFRP_NCEP_SP_L1_1980.dym" layer1="mclU_PFRP_NCEP_SP_L2_1980.dym"

layer2="mclU_PFRP_NCEP_SP_L3_1980.dym"/>

<strfile_v_clm layer0="mclV_PFRP_NCEP_SP_L1_1980.dym" layer1="mclV_PFRP_NCEP_SP_L2_1980.dym"

layer2="mclV_PFRP_NCEP_SP_L3_1980.dym"/>

<strfile_t_clm layer0="mclT_PFRP_NCEP_SP_L1_1980.dym" layer1="mclT_PFRP_NCEP_SP_L2_1980.dym"

layer2="mclT_PFRP_NCEP_SP_L3_1980.dym"/>

<strfile_oxy_clm layer0="mclO_PFRP_NCEP_SP_L1_1980.dym" layer1=

"mclO_PFRP_NCEP_SP_L2_1980.dym" layer2="mclO_PFRP_NCEP_SP_L3_1980.dym"/>

<!-- Output Directory -->

<strdir_output value="output/simout/"/>

<!--====================== -->

<!--FORAGE MODEL PARAMETERS-->

<!--====================== -->

<Tr_max value="450"/>

<Tr_exp value="-0.1"/>

<inv_lambda_max value="1825"/>

<inv_lambda_curv value="-0.1"/>

<E value="0.00316"/>

<c_pp value="0.0948"/>

-2-

Figure A.2: Example xml parfile (continued)
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parfile.xml

<nb_forage value="6"/>

<frg_name>epi meso mmeso bathy mbathy hmbathy</frg_name>

<source_frg epi="0.17" meso="0.1" mmeso="0.22" bathy="0.18" mbathy="0.13" hmbathy="0.2"/>

<day_layer epi="0" meso="1" mmeso="1" bathy="2" mbathy="2" hmbathy="2"/>

<night_layer epi="0" meso="1" mmeso="0" bathy="2" mbathy="1" hmbathy="0"/>

<tstep_forage value="30"/>

<sigma_fcte value="250"/>

<max_NPP value="200"/>

<b_F_habitat value="20000"/>

<!--======================== -->

<!--PREDATOR MODEL PARAMETERS-->

<!--======================== -->

<nb_species value="1"/>

<sp_name>alb</sp_name>

<season_peak alb="1"/>

<gd_threshold alb="0.035"/>

<vertical_movement alb="1"/>

<thermal_inertia alb="1"/>

<penalty_mortality alb="0"/>

<a_sst_spawning alb="1.4">

<variable min="1.0" max="4.0" use="true"/>

</a_sst_spawning>

<b_sst_spawning alb="23.1">

<variable min="21.0" max="30.0" use="true"/>

</b_sst_spawning>

<alpha_spawning alb="1.0">

<variable min="0" max="10.0" use="true"/>

</alpha_spawning>

<nb_recruitment alb="0.003">

<variable min="0.0" max="1.0" use="true"/>

</nb_recruitment>

<a_adults_spawning alb="0.8">

<variable min="0.1" max="5" use="true"/>

</a_adults_spawning>

<a_sst_habitat alb="2.0">

<variable min="1.0" max="3.5" use="false"/>

</a_sst_habitat>

<b_sst_habitat alb="15.0">

<variable min="10.0" max="28.0" use="false"/>

</b_sst_habitat>

-3-

Figure A.3: Example xml parfile (continued)
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parfile.xml

<a_oxy_habitat alb="0.01">

<variable min="1e-10" max="1" use="true"/>

</a_oxy_habitat>

<b_oxy_habitat alb="3.68">

<variable min="2" max="6.0" use="true"/>

</b_oxy_habitat>

<hp_cannibalism alb="5.0">

<variable min="0" max="20" use="false"/>

</hp_cannibalism>

<sigma_species alb="0.25">

<variable min="0" max="1.05" use="false"/>

</sigma_species>

<c_diff_fish alb="0.3">

<variable min="0" max="1.5" use="false"/>

</c_diff_fish>

<MSS_species alb="0.5">

<variable min="0.3" max="2.5" use="false"/>

</MSS_species>

<sp_unit_age_class_jv alb="30"/>

<sp_nb_age_class_jv alb="3"/>

<juv_length>

<alb>3.3 8.4 10.8</alb>

</juv_length>

<juv_weight>

<alb>0.0043 0.009 0.029</alb>

</juv_weight>

<sp_unit_age_class_yn alb="180"/>

<sp_unit_age_class_ad alb="360"/>

<sp_nb_age_class_ad alb="20"/>

<age_recruit alb="0"/>

<age_mature alb="9"/>

<length>

<alb>16.557 29.873 41.051 50.434 58.312 64.924 70.475 75.135 79.046 82.330 87.401 90.974 

93.492 95.266 96.516 97.397 98.018 98.456 98.764 98.982 99.2 </alb>

</length>

<weight>

<alb>0.061 0.412 1.153 2.244 3.589 5.080 6.624 8.148 9.602 10.953 13.29 15.129 16.526 

17.563 18.319 18.866 19.258 19.537 19.736 19.877 20.019</alb>

</weight>

<Mp_mean_max alb="0.15">

<variable min="0.0" max="0.15" use="false"/>

</Mp_mean_max>

<Mp_mean_exp alb="0.035">

-4-

Figure A.4: Example xml parfile (continued)
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parfile.xml

<variable min="0" max="2.5" use="true"/>

</Mp_mean_exp>

<Ms_mean_max alb="0.01">

<variable min="0.001" max="1.0" use="false"/>

</Ms_mean_max>

<Ms_mean_slope alb="-0.167">

<variable min="-0.5" max="0" use="false"/>

</Ms_mean_slope>

<Ms_mean_half alb="34.0">

<variable min="26" max="100" use="true"/>

</Ms_mean_half>

<M_mean_range alb="0.0">

<variable min="0" max="1" use="false"/>

</M_mean_range>

<Food_for_age alb="0.9">

<variable min="0.65" max="1.0" use="false"/>

</Food_for_age>

<forage_ration alb="0.05"/>

<!--========================== -->

<!--FISHERY DATA AND PARAMETERS-->

<!--========================== -->

<file_catch_data>

<nb_files alb="1"/>

<alb file1="alb_catch.txt"/>

</file_catch_data>

<file_frq_data>

<nb_files alb="0"/>

<alb file1=""/>

</file_frq_data>

<q_sp_fishery>

<variables use="true"/>

<L10 alb="3.0e-06">

<variable min="0.0" max="0.01" use="true" dyn="0.0"/>

</L10>

</q_sp_fishery>

<!--selectivities as functions of length-->

<!--1 - logistic, 1 parameter: main parameter is used as a slope coefficient-->

<!--2 - sigmoid, 2 parameters: main parameter as slope coefficient + length_threshold-->

<!--3 - asymmetric Gaussian, 3 parameters: length_threshold as optimal value, main as sigma, right_asymptote as the function min on the right -->

<s_sp_fishery>

<variables use="false"/>

<L10 alb="0.3">

<variable min="0.05" max="0.6" use="false"/>

<function_type value="2"/>

<length_threshold alb="80.0" use="false"/>

<right_asymptote alb="0.1" min="0" max="1" use="false"/>

</L10>
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Figure A.5: Example xml parfile (continued)
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parfile.xml

</L10>

</s_sp_fishery>

<!--================ -->

<!--AGGREGATION ZONES-->

<!--================ -->

<nb_region value="4"/>

<area0 area_id="1" lgmin="130.5" lgmax="165.5" ltmin="-24.0" ltmax="4.0"/>

<area1 area_id="2" lgmin="130.5" lgmax="165.5" ltmin="-54.0" ltmax="-24.0"/>

<area2 area_id="3" lgmin="165.5" lgmax="288.5" ltmin="-24.5" ltmax="4.0"/>

<area3 area_id="4" lgmin="165.5" lgmax="288.5" ltmin="-54.0" ltmax="-24.0"/>

<nb_region_sp_B alb="4"/>

<area_sp_B>

<alb>1 2 3 4</alb>

</area_sp_B>

<nb_EEZ value="0"/>

</par>

-6-

Figure A.6: Example xml parfile (continued)
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Appendix B

Technical annex

B.1 Makefile

HEADERS= \
XMLDocument2.h \
calpop.h \
Map.h \
Matrices.h \
Numfunc.h \
Param.h \
ReadWrite.h \
SaveTimeArea.h \
SeapodymCoupled.h \
SimtunaFunc.h \
StdAfx.h \
mytypes.h \
SeapodymDocConsole.h \
ctrace.h \
Utilities.h \
VarMatrices.h \
VarParamCoupled.h \
VarSimtunaFunc.h

SRCS= \
main.cpp \
XMLDocument2.cpp \
VarParamCoupled.cpp \
seapodym coupled.cpp \
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Map.cpp \
Matrices.cpp \
Numfunc.cpp \
Param.cpp \
ReadWrite.cpp \
SaveTimeArea.cpp \
SimtunaFunc.cpp \
VarParamCoupled.cpp \
VarParamCoupled xinit.cpp \
VarParamCoupled reset.cpp \
SeapodymCoupled EditRunCoupled.cpp \
SeapodymCoupled OnRunCoupled.cpp \
SeapodymCoupled OnRunFirstStep.cpp \
SeapodymCoupled OnBuildForage.cpp \
SeapodymCoupled OnWriteOutput.cpp \
SeapodymDocConsole UpdateDisplay.cpp \
VarSimtunaFunc feeding habitat.cpp \
dv spawning habitat.cpp \
dv juvenile habitat.cpp \
dv mortality sp.cpp \
dv spawning habitat.cpp \
dv caldia.cpp \
dv tridag bet.cpp \
dv calrec adre.cpp \
dv survival.cpp \
dv precalrec.cpp \
dv calrec precalrec.cpp \
dv predicted catch.cpp \
dv spawning.cpp \
dv feeding habitat.cpp \
dv total pop.cpp \
dv total mortality comp.cpp \
dv starvation penalty.cpp \
dv sst habitat.cpp \
Calpop caldia.cpp \
Calpop calrec.cpp \
Calpop InitCalPop.cpp \
Calpop precaldia.cpp \
Calpop precalrec.cpp \
Calpop tridag.cpp \
Calpop recompute coefs.cpp \
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like.cpp

SRCPATH=DOM/src:src
INCPATH=-IDOM/src -Isrc
BINPATH=.

OBJPATH=objs
ADMODEL HOME=/home/isenina/admodel

DEBUG= -g
CFLAGS=-DTRUE=true -DFALSE=false -DVERCONS=1 -D GNUDOS -DOPT LIB -
Wall -Wno-deprecated -I$(ADMODEL HOME)/include -I/usr/include/libxml2 $(INCPATH)

LFLAGS=-lm -L$(ADMODEL HOME)/lib -ldf1b2o -ladmod -ladt -lado -ldf1b2o -ladmod
-ladt -lado -lstdc++ -lm -lado -ladt -ldl -lxml2
CC=gcc
LL=$(CC)

vpath %.cpp $(SRCPATH)
vpath %.h $(SRCPATH)

OBJECTS=$(SRCS:%.cpp=$(OBJPATH)/%.o)

export OBJECTS
export OBJPATH

export CFLAGS
export LFLAGS
export CC
export LL

all: init $(BINPATH)/seapodym

init:
@test -d $(OBJPATH) || mkdir -v $(OBJPATH)

test: init $(OBJECTS)
make -f Makefile.test

docs: $(SRCS) $(HEADERS)
@doxygen
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$(BINPATH)/seapodym : $(OBJECTS)
$(LL) -o$@ $(DEBUG) $ˆ $(LFLAGS)

$(OBJPATH)/%.o : %.cpp
$(CC) -o$@ $(DEBUG) -c $(CFLAGS) $(filter %.cpp, $ˆ)

$(OBJECTS) : $(HEADERS)

clean:
@rm -vf $(OBJECTS) $(BINPATH)/seapodym
@rm -vf $(OBJECTS) $(BINPATH)/seapodym.exe
@rm -vf $(OBJECTS) $(BINPATH)/TestSeapodymCoupled
@rm -vrf $(OBJPATH)
@rm -vrf docs
@rm -vf gmon.out

B.2 Files formats

B.2.1 ASCII fishing data files

The tab delimited text files contaning spatially distributed fishing (Effort and Catch) data
have the following structure:

Nb of fisheries in the file

Nb of records by fishery Data Nb by fishery 1 ... Data Nb by fishery N

f yr mm dd gr lat lon res E C

Note that the spatial coordinates (lon and lat) are given for the center of the region
with the resolution given in the res column.

B.2.2 Files .bin

These files are produced with the software GMB that redistribute data at the resolution of
the selected grid (cf GMB readme file), taking into account the land mask. To get them
GMB requires a short configuration file with the paths to original CES files and options for
data extraction. The example of such configuration file is given below:
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6 : number of fisheries files

4 : number of species per file

skj 1 : species and flag to output data for it or not

yft 0 : the second species and flag

bet 0 : ...

alb 0 : the last species and flag

0 : 1 - input files are binary, 0 - ASCII

1 : 0 - output if nonzero catches, 1 - output if nonzero effort, 2 - output if catch or effort nonzero

1 : 1 - output file is binary, 0 - ASCII
path to file1.txt

path to file2.txt

path to file3.txt

path to file4.txt

path to file5.txt

path to file6.txt

As the result GMB will create in data directiory six binary files (named as file* skj.bin)
with redistributed effort and skipjack catch, if the effort is non null.

Binary format, which is read by Seapodym is similar to ASCII format but containing

explicitely the binary addresses to each fisheries time series:
First year First month

Last year Last month

Number of species in file
MinLon MaxLon MinLat(upper) MaxLat : model domain coordinates
MinLon MaxLon MinLat(upper) MaxLat : fishing area coordinates
Address of first record Address of last record for time[0]

..

..

Address of first record Address of last record for time[Tmax]

i j effort(i,j) catch(species[0],i,j) ... catch(species[max],i,j)
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