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A spatially disaggregated, length-based, age-structured population
model of yellowfin tuna (Thunnus albacares) in the western and central
Pacific Ocean
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Abstract. A spatially disaggregated, length-based, age-structured model for yellowfin tuna (Thunnus albacares)
in the western and central Pacific Ocean is described. Catch, effort, length-frequency and tagging data stratified by
quarter (for the period 1962-99), seven model regions and 16 fisheries are used in the analysis. The model structure
includes quarterly recruitment in each region, 20 quarterly age classes, independent growth patterns for juveniles
and adults, structural time-series variation in catchability for all non-longline fisheries, age-specific natural
mortality, and age-specific movement among the model regions. Acceptable fits to each component data set
comprising the log-likelihood function were obtained. The model results suggest that declines in recruitment, and
as a consequence, population biomass, have occurred in recent years. Although not obviously related to over-
exploitation, the recruitment decline suggests that the productivity of the yellowfin tuna stock may currently be
lower than it has been previously. Recent catch levels appear to have been maintained by increases in fishing
mortality, possibly related to increased use of fish aggregation devices in the purse-seine fishery. A yield analysis
indicates that average catches over the past three years may have slightly exceeded the maximum sustainable yield.
The model results also reveal strong regional differences in the impact of fishing. Such heterogeneity in the

fisheries and the impacts on them will need to be considered when future management measures are designed.

Additional keywords: length-based model, statistical age-structured model, spatial model, stock assessment

Introduction

Yellowfin tuna (Thunnus albacares) is an important
component of the tuna fishery in the western and central
Pacific Ocean (WCPO), with annual catches over the past
decade averaging almost 400000 t (Lawson 2000). Catches
are distributed over a wide area, from the Philippines and
Indonesia in the west to Hawaii, Kiribati and French
Polynesia in the east (Fig. 1). The majority of the catch is
taken by industrial purse seiners (~60%) and longliners
(~17%), and by a variety of small-scale fishing gears (gill-
net, troll, handline and others) in the Philippines and eastern
Indonesia (~20%). Yellowfin tuna is believed to constitute a
discrete genetic stock in the WCPO (Ward et al. 1994).
Previous assessments of yellowfin tuna in the WCPO
have relied mainly on analyses of standardized longline
catch-per-unit-effort (CPUE) and tagging data (Hampton et
al. 1999). However, with formal international management
arrangements for tuna fisheries in the WCPO currently being
negotiated (Anon. 2000), there is a need for a more
sophisticated assessment approach that can indicate the
current status of the resource relative to defined biological
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reference points (Schnute and Richards 1998) and evaluate
alternative harvest strategies. A model that sufficiently
captures the complexity of the population dynamics and
fisheries is required as a first step. In particular, because
yellowfin tuna is captured at different ages by different gear
types, such a model will need to incorporate age structure to
be able to predict the stock response to changes in harvest
levels by the different fisheries. Also, the wide distribution
of the stock and fisheries coupled with spatial heterogeneity
in yellowfin tuna fishery and population parameters
(including movement patterns), requires treatment of the
spatial distribution of the fisheries, the fish and fish
movement.

The MULTIFAN-CL model (Fournier et al. 1998)
provides a good basis for a spatially disaggregated, age-
structured model for yellowfin tuna. MULTIFAN-CL is age
structured, with the age composition of catches being
estimated from length-frequency samples. The model is
spatially disaggregated, with the population and fisheries
stratified into a number of regions within the overall stock
range. Other features of the model, such as the treatment of
process error in the fishing effort — fishing mortality
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Fig. 1. Distribution of yellowfin tuna catch by gear type in the WCPO, 1990-98, and the seven-

region spatial stratification used in the model.

relationship, also make it a suitable choice as a starting point
for a yellowfin tuna stock assessment model.

This paper describes the adaptation and extension of the
MULTIFAN-CL model for the stock assessment of yellowfin
tuna in the WCPO. The major extension of the model
involves the incorporation of tagging data into the model to
facilitate the estimation of age-dependent movement and
natural mortality rates. Various adaptations of the model to
deal with specific features of yellowfin tuna biology (e.g.
non-von Bertalanffy growth of juveniles) and fisheries are
described as a base-case example. A yield analysis is
integrated into the model as an example of how the model
results might be interpreted in a fishery management
context.

Methods

Below, we describe the conceptual basis of the population dynamics
model, the data used in the model and the parameter estimation
procedures employed. The full mathematical specification of the
model and the various components of the likelihood function are given
in a series of appendices.

Population dynamics model

The equations specifying the population dynamics of yellowfin tuna are
given in Appendix A. The model is age-structured, with twenty
quarterly age-classes considered (Eqns A.1-A.2). The final age-class
is an aggregate of all fish of that age and older. The time intervals in

the model are quarters (Jan—Mar, Apr—Jun, Jul-Sep, Oct—Dec), and the
time period covered by the analysis extends from 1962 to 1999. Spatial
structure is incorporated by modelling the yellowfin tuna population
separately in seven regions (Fig. 1). These regions reflect the
distribution of the various fisheries defined in the model and the spatial
resolution of some of the data.

Recruitment of yellowfin tuna is assumed to occur at the beginning
of each quarter. Earlier attempts to fit an annual recruitment model
proved unsuccessful because of the lack of an annual recruitment signal
in the majority of the length-frequency data. This was not unexpected,
because yellowfin tuna spawning does not follow a clear annual pattern
in the tropics, but seems to occur sporadically when food supplies are
plentiful (Itano 2000). Recruitment is parameterized as the product of
a spatially aggregated average recruitment, a vector specifying the
time-series variation (lognormally distributed) in spatially aggregated
recruitment, a vector specifying the average distribution of recruitment
among the regions and a matrix specifying the time-series variation in
the spatial distribution of recruitment (Eqn A.1). Spatially aggregated
recruitment may be assumed to have a weak association with spawning
biomass via a Beverton and Holt stock-recruitment relationship. This
assumption is optional, but is required if the model results are to be used
in a yield analysis. The assumption is introduced by means of a small
penalty on the objective function (see Appendix D, Eqns D.6 and D.7).

The age structures of the region-specific initial populations are
assumed to be at equilibria defined by the average total mortalities in
each region over the initial 20 quarters (Eqn A.3). Catches were
relatively low (~50000 t per year) during this period and similar to those
in the years immediately preceding 1962.

Movement of yellowfin tuna among the regions is assumed to occur
instantaneously at the beginning of each quarter (Eqns A.4, A.S).
Movement is age-dependent (Eqn A.6) and is assumed to be time-
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Table 1. The definition of fisheries used in the model
The spatial configuration of the model regions is shown in Fig. 1

Fishery Model region  Gear type/fishing method
PR 3 Philippines ringnet/purse seine
PH 3 Philippines handline
IN 3 Indonesia various
PA3 3 Purse-seine associated sets
PU3 3 Purse-seine unassociated sets
PA4 4 Purse-seine associated sets
PU4 4 Purse-seine unassociated sets
PAS 5 Purse-seine associated sets
PU5 5 Purse-seine unassociated sets

L1 1 Longline

L2 2 Longline

L3 3 Longline

L4 4 Longline

L5 5 Longline

L6 6 Longline

L7 7 Longline

invariant. We are therefore attempting to capture only the general
pattern of cohort dispersal over time, and not model the detailed
movement dynamics of yellowfin tuna, which are likely to be highly
variable and affected by a range of biological and physical factors.
Natural mortality is assumed to be age-dependent, but time- and region-
invariant.

Sixteen fisheries are defined on the basis of gear type, set type in the
case of purse-seine gear, and region of operation (Table 1). Catch and
fishing mortality are fishery-, age- and time-specific (Eqn A.7), with
fishing mortality partitioned into age-dependent (selectivity) and time-
dependent components (catchability and effort) (Doubleday 1976;
Paloheimo 1980; Fournier and Archibald 1982; Fournier et al. 1998). A
process error term (effort deviations) was included in the effort—fishing
mortality relationship (Eqn A.8) to acknowledge the stochastic
variability that occurs in most fisheries.

Selectivity is fishery-specific and assumed to be time-invariant.
Selectivity coefficients have a range of 0—1, and for the longline
fisheries (which catch almost exclusively adult yellowfin tuna) are
assumed to increase monotonically with age. The coefficients are
expressed as age-specific parameters, but are smoothed according to
the degree of length overlap between adjacent age classes (Eqns A.9—
A.12). This is appropriate where selectivity is thought to be a
fundamentally length-based process (Fournier et al. 1998). The
coefficients for the last four age classes are constrained to be equal,
because the mean lengths for these age classes are very similar. All
longline fisheries except L1 are assumed to have common selectivity
coefficients. Selectivity coefficients for L1 are estimated separately
because preliminary analyses using a model incorporating common
selectivity for all longline fisheries resulted in a poor fit to the L1
length-frequency data.

Catchability is allowed to vary slowly over time (akin to a random
walk) for the non-longline fisheries using a structural time-series
approach (Gudmundsson 1994) (Eqn A.13) with ‘random-walk’ steps
taken every three years. Catchability for the longline fisheries is
assumed to be constant over time and among regions (the rationale for
this is explained in the next section). Seasonal variability in
catchability is allowed for all fisheries for which quarterly data were
available (all except the PR, PH and IN fisheries) (Eqn A.14).

Length-frequency data were used to estimate catch age
composition, and therefore some assumptions need to be made
concerning the length distribution of the fish (Fournier et al. 1990).
These assumptions are (i) that lengths of the fish in each age-class are
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normally distributed (Eqns A.15—A.17) (ii) that mean lengths-at-age of
age-classes 9 through 20 lie on a von Bertalanffy growth curve (Eqn
A.18) and (iii) that standard deviations of the lengths for each age-class
are a linear function of the mean length-at-age (Eqn A.19). Regarding
assumption (ii), previous analyses (Lehodey and Leroy 1998) revealed
significant departure from von Bertalanffy growth of juvenile
yellowfin, so the mean lengths of the first 8 age-classes were allowed to
be independent parameters of the model.

The spawning biomass of the population is a quantity that is often
monitored for management purposes. We use spawning biomass to
estimate the stock—recruitment relationship for the yield analysis and
compute it as a function of numbers-at-age, the proportion of mature
fish in each age-class and the average weight of fish in each age-class
(Eqns A.20, A.21).

Dynamics of tagged yellowfin tuna

Several modifications of this general population dynamics model for
yellowfin tuna are required to model the dynamics of the tagged fish
(Appendix B). The main difference is that the tagged population is
stratified by ‘cohorts’ (releases in a particular region during a particular
time period) and recruitment to the tagged population occurs when
tagged cohorts are released (Eqns B.1, B.2).

Tag recaptures are predicted in an equation similar to that for the
general population (Eqn B.3). Because not all tag recaptures were
reported, fishery-specific tag-reporting rates are incorporated into
Eqn B.3.

For the tagged population and the general population to share
fishing mortality parameters, it must be assumed that the tagged fish
become randomly mixed with the general population within the spatial
strata being considered. As the regions defined in the yellowfin tuna
model are large, it is likely that this assumption will not be satisfied
soon after release. The approach that we have taken is to define a
number (one, in this case) of initial time periods after release as ‘pre-
mixed’ periods and to compute fishing mortality rates for each tag-
release cohort during such periods based on the observed recaptures
and estimated tag-reporting rates. This or similar procedures are
commonly applied in analyses of tagging data (e.g. Hoenig et al. 1998,
Bertignac et al. 1999, Hampton 2000).

Data used in the model

The model parameters are estimated by minimizing an objective
function that comprises the sum of the negative log-likelihoods of the
data and various penalties that constrain the parameterization. The data
component of the objective function comprises the log-likelihoods of
the observed total (i.e. age-aggregated) catches by time period and
fishery, the observed length-frequency proportions by time period and
fishery and the observed tag recaptures by tag-release cohort, age-class,
time period and fishery. The form of the log-likelihood function for
each of these data categories is detailed in Appendix C. Below we
describe the important aspects of the structure and variability of each
data set. Effort data are not ‘data’ in the sense that they are predicted
and used to fit the model, but may be thought of as priors for effective
effort. The effort data are also included in the data description given
below.

The catch data (Fig. 2) define the occurrence of a fishery in a
particular time period, termed a fishing incident. The yellowfin tuna
data comprise 1941 fishing incidents across the 16 fisheries and 152
quarterly time periods covered by the analysis. Data for the longline
fisheries for 1999 were not available at the time of analysis, and were
assumed to be the same as for the corresponding quarters in 1998.

The catch data are modelled by using the sum of squared residuals
in the log of the observed and predicted catches (Eqn C.1), which may
be expressed in either numbers or weight of fish for each fishing
incident in a particular fishery. Catches are expressed in numbers of
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fish for the longline fisheries and in weight for the other fisheries,
consistent with logbook and other catch recording methods used in the
fisheries. We assume that the total catch data are observed with no bias
and relatively high precision (equivalent to a residual s.d. of 0.07).
Effort data were available for all fishing incidents for all fisheries
other than the PR, PH and IN fisheries, for which no effort data were
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available, and for 1999 for the longline fisheries. In these cases, effort
data were defined as ‘missing’, a nominal value of effort was assumed
and the effort deviations were given sufficient flexibility to allow the
catch to be accurately predicted.

Effort for purse-seine fisheries is measured as days fishing and/or
searching, and is allocated to either associated sets (sets on floating
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mark the estimated mean lengths for each age class in each period.
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objects such as logs and fish aggregation devices (FADs)) or
unassociated sets (sets on free-swimming tuna schools) based on the
proportion of total sets attributed to those set types in logbook data. For
the longline fisheries, we used estimates of standardized effort derived
in a separate study (Bigelow et al. 1999). Essentially, standardized
effort is an estimate of the numbers of longline hooks fishing in the
mixed layer above the thermocline, which is believed to define
yellowfin tuna habitat. The estimates take into account the time and
spatial variability in the depth of the mixed layer (using oceanographic
databases) and variation in the fishing depth of longliners as indicated
by distributions of the numbers of hooks between floats. The
standardized effort estimates were derived at 5°-month resolution
separately for the Japanese, Korean and Taiwanese distant-water
longline fleets. The estimates were then summed across these fleets and
aggregated into the spatial and temporal stratification used in the
model. Longline effort in each fishery was divided by the relative size
of the respective region, allowing longline CPUE to index abundance in
each region (rather than density). This allowed simplifying
assumptions to be made regarding the spatial and temporal stability of
catchability for the longline fisheries.

Length-frequency data (Fig. 3) were available for only a limited
period in the 1990s for the PR, PH and IN fisheries, and after 1984 for
the purse-seine fisheries. Length-frequency data were available for
each of the longline fisheries over the entire period of the analysis. It
was assumed that individual length-frequency samples (taken at a
particular vessel unloading by port samplers, or on a particular day by
observers) represented random samples of the catch length composition
for that fishery and time period. Such individual length-frequency
samples were therefore simply aggregated without weighting to
produce the data by fishery and time period. The length-frequency
proportions are modelled by use of a robust normal likelihood function
(Eqns C.4—C.6). For computing the variance, the maximum length-
frequency sample size is limited to 1000 and the variance expanded by
a factor of 10 to acknowledge non-random sampling.

Yellowfin tuna tagging data (Kaltongga 1998: Fig. 4) were
aggregated in a similar fashion to the fishery data. Tag releases
from 1989 to 1992 were aggregated into 25 release cohorts (by
quarter and region). The age structure of release cohorts is
estimated internally by the model, as described earlier. Recaptures
are classified by age-class, quarter and recapture fishery. The age-
class at recapture is obtained by adding the number of time periods
between release and recapture to the estimated age-class at release.
The two purse-seine fisheries in each of regions 3, 4 and 5 were
grouped for the purposes of modelling tag returns because
information on set type (associated or unassociated sets) was not
consistently provided with tag returns. Overall, 39424 releases and
4231 tag returns were included in the analysis. The tag-return data
are modelled using a log negative binomial likelihood function (Eqn
C.11), which explicitly acknowledges overdispersion of the tagging
data relative to Poisson or multinomial probabilities.

Penalties on the objective function

The base-case model has a total of 3396 estimated parameters,
including process error variables. Extensive use is made of
penalties on the objective function to constrain the parameterization
of the model. These penalties may be thought of as incorporating
prior information into the model. For example, prior distributions
on the effort deviations ¢, (Eqn A.9) and the catchability
deviations m, . (Eqn A.14) are used to constrain the variability of
these process error terms. The various penalty functions are
described in Appendix D. A complete listing of estimated
parameters, and a brief description of their constraints, is given in
Appendix E.
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Parameter estimation

The parameters of the model are estimated by minimizing the sum of
the data contributions to the objective function (C.1, C.4, C.11) and the
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contributions of the penalties (D.1, D.3-D.5, D.7-D.12). The
minimization is performed by an efficient optimization using exact
derivatives with respect to the model parameters. The derivatives are
calculated by an extension of automatic differentiation (Griewank and
Corliss 1991) implemented in the AUTODIF C++ library (Otter
Research Ltd 1994). The method also provides estimates of the Hessian
matrix at the mode of the posterior distribution (see Fournier et al. 1998
for details), which we use in conjunction with the delta method (Seber
1973) to obtain estimates of the covariance matrix and approximate
confidence intervals for the model parameters and derived quantities of
interest.

The model was fitted to the data from arbitrary starting conditions
by a phased estimation procedure. The initial phase employed a
relatively simple model structure (age-independent and fixed natural
mortality and movement, constant catchability for all fisheries, fixed
distribution of recruitment among regions, fixed Brody growth
coefficient and other simplifying assumptions). For subsequent phases,
the model’s assumptions were progressively relaxed and additional
parameters estimated. In the final phase, all parameters for the base-
case model were estimated simultaneously.

Results and discussion
Fit of the model to the data

The fit of the model to the total catch data by fishery is very
good (Fig. 2), reflecting our assumption that observation
errors in the total catch estimates are relatively small.

The fit to the length data is displayed in Fig. 3a for length
samples aggregated over time for each fishery. Note that this
is not the form in which the data enter the model, but is a
convenient way of assessing the overall fit of the model to the
length data for each fishery. On the whole, the model
appears to have captured the main features of the data,
particularly for the larger, more heavily sampled fisheries.
The modal structure evident in the PR, PH, IN fisheries and
in some of the purse-seine fisheries is well represented by the
model predictions, while the shape and location of the length
distributions of all fisheries is well estimated.

There is more variability in the fits when the data are
disaggregated by time period, but on the whole the modal
structure of the various samples and modal progression over
time seem to be consistently interpreted by the model. A
good example of modal progression and seasonal
recruitment to the fishery can be seen in fishery L1 (Fig. 3b).
The modal structure and progression are very clear in these
samples and the model has replicated these features very
well.

The fit of the model to the tagging data compiled in
various ways is shown in Fig. 4. The fit to the total tagging
data by calendar time period (Fig. 4a) and by time at liberty
(Fig. 4b) are both satisfactory. For the data classified by
fishery (Fig. 4c), the fits are mostly satisfactory for the
fisheries returning large numbers of tags. The exception to
this is the IN fishery, where ~200 tag returns were predicted
by the model to have occurred in late 1992 and early 1993,
but almost none was observed. The predicted returns are
largely the result of tag releases made in the Philippines
during late 1992. The tags used in this component of the
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tagging project were identifiably of Philippines origin, and
differentially high non-reporting of recaptures of these tags
by Indonesian fishermen is suspected to have occurred. This
might explain the discrepancy between observed and
predicted returns in the IN fishery at this time.

Growth estimates

Using the four-cohort-per-year formulation, the model was
able to detect a coherent growth signal in the size data. The
non-von Bertalanffy growth of juvenile yellowfin is evident,
with a pronounced reduction in growth rate in the 40—-70 cm
size range (Fig. 5). This growth pattern and the estimated
growth curve in general are corroborated by estimates of
length-at-age obtained from reading daily increments on
yellowfin tuna otoliths (Lehodey and Leroy 1998) (Fig. Sa).
Estimates of length-at-age for yellowfin tuna tag returns at
the time of recapture (Secretariat of the Pacific Community,
unpublished) can also be derived, assuming that age at
release is well estimated by an age—length relationship based
on the otolith data. These estimates are more variable than
the otolith data, but evidence of the reduction in growth rate
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in the 40-70 cm size range is also present (Fig. 5b).
However, the lengths at recapture are on average somewhat
smaller than would be predicted by either the otolith data or
the estimates obtained from this model. The reason for this
inconsistency is not known. A negative effect of tagging on
growth has been observed in other tunas (e.g. Hampton
1986) and this could also be the case for yellowfin tuna.

Selectivity estimates

Selectivity coefficients for each fishery (Fig. 6) are assumed
to be stable over time. Note that the variability of the
coefficients is constrained to some extent by smoothing
penalties, the coefficients for the longline fisheries are
assumed to increase with age and the coefficients for
fisheries L2—L7 are assumed to be common.
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Catchability estimates

Time-series changes in catchability are evident for several
fisheries (Fig. 7). There is evidence of strongly increasing
catchability in the PA4 fishery in the late 1990s. During this
period, the use of drifting FADs increased dramatically. The
locations of FADs are monitored electronically by the
deploying vessels, and in some cases the FADs are equipped
with echo sounders to detect the presence of tuna. It is likely
that these developments have increased the operational
efficiency of purse-seine vessels, which may explain the
increased catchability towards the end of the time series.

Increases in catchability are also estimated for some of the
other purse-seine fisheries, e.g. the PU4 and PAS fisheries.

Seasonal variation in catchability is apparent in all
longline fisheries, but is greater for the L1 and L2 fisheries
(northern temperate), and the L6 and L7 fisheries (southern
temperate). The phases of the seasonality in the north and
south are offset by ~0.5 years, as expected (Fig. 8).

The overall consistency of the model with the observed
effort data can be examined in plots of effort deviations
(Fig. 9) against time for each fishery. If the model is
coherent with the effort data, we would expect an even
scatter of effort deviations about zero. Some outliers would
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Fig. 8. Seasonal patterns in catchability for longline fisheries in

northern (L1) and southern (L6) regions of the model area.

also be expected, which prompted the use of robust
estimation techniques. On the other hand, if there was an
obvious trend in the effort deviations with time, this may
indicate that a trend in catchability had occurred and that this
had not been sufficiently captured by the model. No unusual
variability in the residuals is apparent in Fig. 9, suggesting
that the model has extracted all the information present in the
data regarding catchability variation.

Fig. 9 also provides an indication of the relative variability
of the effort data with respect to the model. The plots
suggest that the data for the L3, L4 and L5 fisheries (the
longline fisheries in the tropics) provide the best information
on the stock dynamics.

For the longline fisheries, we assumed catchability to be
constant among regions, as well as over time (with the excep-
tion of seasonal variation). This assumption was considered
appropriate because of the use of standardized effort for
these fisheries, i.e. the numbers of longline hooks fishing in
yellowfin tuna habitat (the upper mixed layer) in a standard-
ized area. Given this assumption and treatment of the lon-
gline effort data, we would expect that longline CPUE would
provide an index of exploitable abundance (population-at-
age multiplied by age-specific selectivity and summed
across age-classes) in each region. The time-averaged rela-
tive levels of exploitable abundance and CPUE among re-
gions are almost identical (Fig. 10), which is consistent with
the assumption of constant longline catchability among re-
gions. Fig. 11 compares exploitable biomass and CPUE for
each region individually. There is generally good agreement
between the time-series patterns of the two variables in each
region. This indicates that the model has incorporated the in-
formation on longline CPUE into the stock dynamics as in-
tended by the catchability assumptions.

Natural mortality rate estimates

The estimated natural mortality rates are allowed to vary
with age class (Fig. 12). For the mid-sizes of ~55-90 cm, the
estimates are in the range 0.6—0.7 year™', which is consistent
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with values commonly assumed for yellowfin tuna in other
areas. The right-hand end of the curve begins its upward
movement at around the size at first maturity. After ~130 cm
in size, M is estimated to decline sharply. One possible
interpretation of this pattern is that the high energetic
requirements of spawning in female yellowfin tuna
(Schaefer 1996) cause higher female mortality, with
aggregate M falling at larger size as females make up a
declining proportion of the population. The declining
incidence of yellowfin tuna females with increasing fish size
(Schaefer 1998; Secretariat of the Pacific Community,
unpublished) is congruent with this explanation. Such size-
related changes in natural mortality and sex ratio have been
estimated in other tunas as well (Fournier et al. 1998;
Hampton 2000). If the hypothesis regarding mortality-
related changes in sex ratio is correct, then the addition of
sex-ratio data as a component of the objective function may
provide useful information on age-specific natural mortality
in tuna population dynamics models.

Movement rate estimates

A representation of the dispersal patterns resulting from the
estimated movement parameters is shown in Fig. 13, which
shows the changes in the relative distributions over time of
cohorts originating in each region.  Yellowfin tuna
originating in regions 1 and 6 appear to have the strongest
residence. Movement is probably better determined in the
tropical regions (3, 4 and 5) because the majority of tag
releases occurred there. Considerable exchange of fish from
region 3 to region 4 and between regions 4 and 5 is evident.

It is also possible to use the movement coefficients, the
average proportions of the total recruitment occurring in
each region and the age-specific natural mortality rates to
estimate the equilibrium stock composition (in either
numbers or weight of fish) in each region in the absence of
fishing (Fig. 14). The model results imply that 60% of the
equilibrium biomass in region 1 would be composed of fish
recruited in that region. The contributions of local
recruitment to equilibrium biomass in the other regions is
50% (region 2), 60% (region 3), 70% (region 4), 15%
(region 5), 60% (region 6) and 100% (region 7). An
interesting outcome of organizing the model results in this
way is that it might provide a means of incorporating stock
composition data (e.g. from analysis of otolith micro-
constituents) into the model to provide additional
information on dispersal patterns.

Fishing mortality rate estimates and the impact of fishing on
the stock

Annual age-specific fishing mortality rates for the stock as a
whole are shown in Fig. 15. Fishing mortality for all ages has
increased over time, with the highest levels being estimated
for yellowfin tuna aged approximately 0—1 year. A large
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Fig. 9. Distributions of effort deviations over time, by fishery (see Table 1 for definition of fishery codes). The x-axis scale

for each fishery is the same as in Fig. 7.

component of the exploitation of these small fish occurs in
region 3 where they are targeted by the domestic fisheries of
Philippines and Indonesia. For this age group, the fishing
mortality rates in recent years exceed the corresponding age-
specific natural mortality rate. For all other age groups the
estimated fishing mortality rates are well below the
corresponding natural mortality rates.

For a complex model such as this, it is difficult to readily
interpret fishing mortality rates and other parameters to
obtain a clear picture of the estimated impact of fishing on
the stock. To facilitate this, we have computed total biomass
trajectories for the population in each region using the
estimated recruitment, natural mortality and movement
parameters, but assuming that the fishing mortality was zero
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throughout the time series. Comparison of these biomass
trajectories with those incorporating the actual levels of
observed historical fishing provides a concise, integrated
picture of the impacts of the total fishery on the stock.
Biomass trajectories for each region and for the WCPO in
total are shown in Fig. 16. There is very little difference
between the ‘actual’ and the ‘unfished’ biomass trajectories
in regions 1, 2, 6 and 7. The impact of fishing on the sub-
populations in these regions can therefore be considered to
be negligible. Forregions 4 and 5, the difference between the
‘actual’ and ‘unfished’ trajectories is more significant. In
region 4, the ‘actual’ biomass is ~44% below the ‘unfished’
biomass in 1999. For region 5, the difference is 26%. For
region 3, there is much greater divergence between the two
trajectories — in 1999, the ‘actual’ biomass is ~85% below
the ‘unfished’ biomass. This result would suggest that there
has been a large depletion of the sub-population in this
region, primarily by the domestic fisheries of the Philippines
and Indonesia.

Tag-reporting rate and overdispersion estimates

Tag-reporting rates were estimated for all fisheries, with
relatively informative priors provided for the purse-seine
fisheries (Table D1) for which independent information on
tag-reporting rates was available from tag-seeding
experiments (Hampton 1997). The estimated reporting rates
(Fig. 17) are in the range of 0.50-0.75 for most of the
fisheries, with the exception of the L3 and L5 fisheries, for
which the estimated rates are ~0.15.

There was strong evidence of overdispersion of the tag-
return data relative to Poisson or multinomial probabilities
for the PR, PH, IN and all purse-seine fisheries. For these
fisheries, the estimates of the negative binomial parameter
determining the variance (see Eqn C.8) were all <5,
indicating significant overdispersion. For the longline
fisheries (which returned relatively few tags), there was no
evidence of overdispersion.
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Fig. 11. Estimates of exploitable abundance and CPUE for the
longline fisheries in each region. Both variables have been smoothed
to remove seasonal variation.

Recruitment estimates

The recruitment estimates display considerable low- and
high-frequency variation (Fig. 18). The low-frequency
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variation might be correlated with decadal-scale
environmental variation and some of the higher frequency
variation to the El Niflo—La Nifia cycle, although these
hypotheses have not yet been examined in detail.

The precision of the total-recruitment estimates (Fig. 18a)
is indicated by the approximate 95% confidence intervals.
For the whole period considered by the model, the average
recruitment CV is 0.13. However, the CV is higher towards
the end of the time series and is 0.25 and 0.50 for the last two
quarters, respectively. This degradation in performance of
recruitment estimates is expected for cohorts that have
experienced relatively little fishing.

The average distribution of recruitment among the
regions is estimated to be 30% of the total recruitment
contributed by region 3, 47% by region 4 and 11% by region
5, with the remaining 12% contributed by the subtropical
regions. This estimated average distribution is consistent
with general biological understanding of yellowfin tuna
spawning and recruitment in the WCPO.

Biomass estimates

Time series of total and spawning biomass by region are
shown in Fig. 19. Most of the total population biomass is
estimated to occur in the tropical regions 3, 4 and 5.
However, greater proportions of the spawning biomass are
located in the sub-tropical regions to the north (regions 1 and
2) and south (region 6), reflecting the dispersal of cohorts as
they age.

Total and spawning biomass peaked in the early 1980s
and have been trending downwards since that time. Total
biomass is currently about 40% of the level in the early
1960s. The decline in spawning biomass has not been as
severe, but the recent decline in recruitment is yet to affect
the adult component of the stock to any great extent.
However, the model predicts that further declines in
spawning biomass will occur in coming years as these recent
recruitments move through the population.
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Yield analysis and stock assessment

Many management agencies use reference points based on
the concept of maximum sustainable yield (MSY). The
concept was developed as part of the surplus production
model, and has been commonly used in various forms over
many years. However, surplus production models have many
well-documented limitations, which has led to the
development of more data-intensive and realistic population-
dynamics models, such as the statistical age-structured
model described in this paper.

Despite the widespread use of age-structured models in
stock assessment, MSY remains enshrined as a management
paradigm in international treaties and the fisheries
legislation of many countries. Scientists are therefore often
required to express the results of stock assessments in terms
of MSY and related quantities, regardless of the type of
population-dynamics model used. In the case of age-
structured models, a yield analysis provides a convenient
means of estimating MSY proxies. We have integrated a
yield analysis into the overall parameter estimation, thus
incorporating all parameter uncertainty into the results. The
analysis comprises the following steps:

(I) Estimate a stock-recruitment relationship for
predicting equilibrium recruitment from equilibrium
spawning biomass.

(2) Specify the age-specific exploitation pattern to be
used in the analysis; for yellowfin tuna, we have used the
average WCPO fishing mortality rates for the last 12
quarters (i.e. 3 years) to define the age-specific exploitation
pattern.

(3) Using the population dynamics model specified in
Appendix A and the estimated stock-recruitment
relationship, predict equilibrium yield for a series of fishing-
effort multipliers.

949

150 1 a6 01
1.00 1
0.50 -

0.00 -

0154 Age 1-2

0.10 -

0.05 -

0.00
0.5 1 Age2-3
0.10
0.05

0.00

Average annual fishing mortality

0157 Age3-4

0.10 -

0.05 -

0.00

0.15

Age 4-5

1960 1970 1980 1990 2000

Fig. 15. Average annual fishing mortality rates by annual age
groups for the entire model area.

In the estimated Beverton and Holt stock—recruitment
relationship (Fig. 20), as 1is often the case with
stock—recruitment estimates, there is a lot of noise and little
apparent relationship with spawning biomass. Therefore, the
estimated stock—recruitment relationship is very flat over
most of the spawning biomass range, with significant decline
in recruitment occurring only at spawning biomass levels
below ~15% of the maximum spawning biomass. We cannot
say with any certainty that this is really how recruitment
would behave at low stock levels that have not yet been
observed. This is an inherent problem with such analyses.
Relative to the estimated recruitment variability, the 95%
confidence intervals on the stock—recruitment curve seem
unrealistically low. This is probably due to the inflexibility
of the Beverton and Holt model.

The estimated equilibrium yield is plotted in Fig. 21.
Yield is maximized at an effort multiplier of 1.1 (i.e. 10%



950

207 Region 1
101 M
00
307 Region 2
2.0
10
0.0
407 Region 3
»n 00
7]
(]
£ 207 Region4
=}
o
10
2
=}
% 00
o
157 Region 5
10
0.5
0.0
157 Region 6
10
0.5
0.0
407 Region7
20
0.0
157 WCPO
05
00 T T T . )
1960 1970 1980 1990 2000

Fig. 16. Estimated biomass trajectories assuming the
observed levels of fishing (heavy lines) and assuming no
fishing (thin lines) for each region and for the WCPO.
Trajectories plotted relative to estimated biomass in 1962.

higher than the 1997-99 average), and the MSY is ~85%
(95% confidence intervals 71-98%) of the average 1997—99
catch, equivalent to ~367000 (306000—423000) t. The
yield-per-recruit curve follows an almost identical trajectory
to the yield curve up to its maximum, but diverges at higher
effort multipliers as effects on recruitment become
significant. The 95% confidence intervals on the yield curve
almost certainly underestimate the true uncertainty because
they do not reflect the possibility of stock—recruitment model
error.
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Conclusions

The length-based age-structured model that we have
developed for yellowfin tuna in the WCPO is considerably
more complex than those typically used in fisheries
applications. As a consequence, the model is data intensive,
but it allows considerable flexibility in modelling complex
biological and fisheries processes, many of which have
direct implications for international management of
yellowfin tuna and other highly migratory species in the
WCPO. For example, the combination of age and spatial
structure in the model has allowed us to capture important
heterogeneity in population distribution and exploitation.
Such information will be critical for the management of
highly migratory fish stocks in a multi-national, multi-gear
fishery. Also, the estimation of time-series trends in
catchability recognizes the reality that units of fishing effort
are rarely static over long periods of time in fisheries — the
effectiveness of fishing effort is liable to change because of
environmental and technological change in particular.
When, as is often the case, such changes cannot be directly
incorporated into estimates of fishing effort, the structural
time-series approach to catchability variation employed here
is a useful modelling alternative.

Of course, the complexity that results from modelling
these and other processes does not come without a cost. A
single, phased estimation for the yellowfin tuna model takes
of the order of 12 h on a high-end desktop computer, and a
similar amount of time to compute the covariance matrix.
This limits our ability to test a large number of alternatives
to the base-case model structure. It also precludes, at this
stage, a pure Bayesian treatment of parameter uncertainty
and statistical inference (which would be preferable to the
use of the Hessian matrix-delta method) through numerical
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integration of the posterior density using Monte Carlo
Markov Chain and other simulation methods (Gelman et al.
1995). As faster computers become available, more flexible
use of complex models will inevitably become feasible.
Also, certain parts of the computer code appear amenable to
multithreaded, distributed processing, which would allow a
single model estimation to be run using the combined
resources of several networked computers. This could
greatly reduce the time required to run the model, and its
application is currently under investigation.

The performance of the model applied to yellowfin tuna
can be assessed in several ways. First, examination of the fits
to the data included in the model provides a fundamental
means of assessing performance. For yellowfin tuna, the fits
to the catch, length-frequency and tagging data all appear to
be good, and reveal no systematic failure of the model’s
assumptions. Secondly, we can use available exogenous data
to test the validity of the model results. In this case, we have
shown that the growth estimates arising from this model are
very consistent with the results of counts of otolith daily



952

Relative total biomass

0.0 e T T T T T T

1962 1966 1970 1974 1978 1982 1986 1990 1994 1998

Relative spawning biomass

0.0 eI I AT

1962 1966 1970 1974 1978 1982 1986 1990 1994 1998

m Region 7
B8 Region 6
@ Region 5
B Region 4
B Region 3
B Region 2
O Region 1

Fig. 19. Time series of estimated (a) relative total biomass and (b)
relative spawning biomass, by region. The scale on the y-axis is
relative to the 1962-99 average.

350,000,000

300,000,000 °
250,000,000 °
o
E &
@ 200,000,000
£
=
3
9]
§ 150,000,000
[

100,000,000 { =

50,000,000

0

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000

Spawning biomass (t)

Fig. 20. Stock-recruitment relationship (solid line) and 95%
confidence intervals (dotted lines) fitted to the estimates of spawning
biomass and recruitment (circles).

John Hampton and David A. Fournier

Yield — — =Yield-per-recruit
1.0 e 0.0008
. —

0.8 ~ T~ .. _
3 n \\§_ ’*n._.______ t 0.0006 g)
o T bt
2 o6 5
2 oo00s £
=
% 04 8
o 3
00002 &
02 o>

0.0 - - - r - r 0.0000

0.0 0.5 1.0 15 20 25 3.0 35
Effort multiplier

Fig. 21. Estimated yield curve with 95% confidence intervals
(dotted lines). Yield-per-recruit curve shown for comparison.

rings. Thirdly, the model results must make good ‘biological
sense’. The yellowfin tuna model seems to fulfil this
criterion in most respects.

Although the model is complex, it is nevertheless a gross
simplification of reality in many respects. For example,
growth is assumed to be identical among regions and
constant over time. Movement and selectivity patterns are
also assumed to be constant over time. As more powerful
computers become available, it would be feasible to relax
some of these assumptions as long as data were available to
support a more complex parameterization. For example,
allowing movement patterns to vary over time would likely
require a long time series of tagging data. However, given
that the end use of this and similar models is stock
assessment, modelling every conceivable type of process
variability is never likely to be feasible or necessary. Further
research is required to better understand what level of model
complexity is appropriate. We plan to address this question
in the near future using simulated data obtained from an
operational model designed to mimic the biology and
fisheries for yellowfin tuna.

The yellowfin tuna analysis presented here falls
somewhat short of a complete stock assessment, because
various plausible alternatives to the base-case model
structure are yet to be systematically tested. Alternative
model structures that will soon be investigated include the
following: time-series and regional variation in catchability
for the longline fisheries; relaxation of the assumption of
monotonically increasing selectivity with age for the
longline fisheries; and the use of different penalty weights
for some components of the objective function.

Although further work as outlined above is required,
the results obtained to date have a number of possible
implications for fisheries management. Recent declines
in recruitment, although not obviously related to fishing
activities, suggest that the productivity of the yellowfin
stock may currently be lower than it has been previously.
Recent catch levels appear to have been maintained
by increases in fishing mortality, facilitated to a large
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extent by technological advances (such as the use of
FADs) in the purse-seine fishery. The yield analysis
suggests that average catches over the past three years
may have slightly exceeded the MSY. Some limitations
on catch and/or fishing effort may therefore now be
appropriate.

The results of the base-case model reveal strong regional
differences in the impact of fishing. In particular, the
fisheries in region 3 are estimated to have had a major effect
on the sub-population in that region. Information on the
Philippines and Indonesian domestic fisheries is poor (lack
of effort data, limited length-frequency data), but the catches
are relatively large and the estimated effects on populations
are plausible. The effects on fisheries in regions 4 and 5, the
major purse-seine fishing area, are also estimated to be
considerable. In contrast, the fisheries in the sub-tropical
regions appear to have had little effect on their respective
sub-populations. Such heterogeneity in the fisheries and the
impacts upon them will need to be considered when future
management measures are designed.
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Appendix A. Population dynamics model for yellowfin tuna

Age-structured dynamics

The equations governing the general age-structured dynamics of yellowfin tuna are:

R exp(9,)at,y,, a=1;1<t<T

N - N, l<a< 4;t=1
T exp(=Z gy N ot l<a<A4;1<t<T
exp(—Za_l’t_ljr )Na—l,t—l,r + exp(—Zajt_l’r)NW_ljr a=A;1<t<T (A.1)
Zatr = 2‘F'at]"r +Ma; (A2)
Ir
where
N’,, 1sthe number of age-class a fish at the beginning of time period # in region » before movement has taken place,
N,  isthe number of age-class a fish at the beginning of time period # in region r after movement has taken place,
R is the spatially aggregated, average recruitment,
o, is a normally distributed random variable, @, ~ N(0;6?), determining the deviation of the spatially aggregated
recruitment in time period ¢ from its average,
o, denotes the average distribution of recruitment among regions,
Yo specifies the spatial distribution of recruitment in time period ¢,
A is the total number of age-classes,
T is the total number of quarterly time periods,
Z,, 1sthe instantaneous rate of total mortality of age-class a during time period ¢ in region r,

F,y,  isthe instantaneous rate of fishing mortality of age-class a during time period # by fishery f, occurring in region r, and

a
g is the instantaneous rate of natural mortality of age-class a.

The recruitment parameters are subject to the constraints that: @, ~ N0:6?%); 29, = 0; 2o, = 1; [Ty, =1;and 2oy, = 1.
7 t r

The initial population N',,, is parameterized as a function of the average spatially disaggregated recruitment IVI', and average
total mortality Z

exp|:— Y Za,r:INl’r l<a< 4
, l'<a
Nalr = Nl,r _
— exp[— S Za/,:l a=A4
l—exp(-Z,) L d<a

77 1 1=k ’
Nlr = Z Nltr

(k—=1)=2
_ 1 t=k

ar = zzatr (A3)
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where £ is the last time period (20 for the yellowfin tuna analysis) included in the average.
Movement is assumed to occur instantaneously at the beginning of each time period. Let N,, and N,, denote vectors
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equivalentto N ,.,and N,,,,» =1, ..., 7. N, is transformed to N, by an age-specific movement transition matrix, B,:
-1 ’
Nat - Ba .Nat’ (A4)
l+viZ+vi3+vid —-v2! —v3! -vi! 0 0 0
—vi2 1+v214y25 0 0 —v32 0 0
-vi3 0 I+v3l+vi vy 0 0 0
B, = —vit 0 —vit o vilevB+vP+vie -v -v§ 0 (A.5)
0 —-v2’ 0 -V I+v32+v3t vy 0 -7
0 0 0 —yio 0 1+v84 487 —v]6
| 0 0 0 0 —v37 —v&7 1+v3+v7e |

where v}” denotes the probability of movement of an age-class a fish from region x to region y. Note that Eqns (A.4) and (A.5)
utilize the fully-implicit, or backward-time method of solving the finite difference equation for movement (see Press et al.
1988 for a good discussion of implicit differencing), which guarantees numerical stability even with large rates of movement.
The zero elements of B, represent non-adjacent regions while the remaining non-diagonal elements are the movement
coefficients to be estimated. One outcome of the implicit method is that fish may move between any two non-adjacent regions
in a single time step as long as the regions are linked by one or more other regions that are adjacent.

Age dependency of v} is specified using a flexible function that can result in increasing (¢ > 0), decreasing (¢}’ <0) or
constant (¢') = 0) movement coefficients with increasing age:

v = ¢j§yexp(¢fy1<a) (A.6)

where ¢} and ¢} are the parameters to be estimated, while k, expresses age scaled between —1 and 1.
The catch in numbers of age-class a fish during time period ¢ by a fishery f, occurring in region r is given by:

Fary,

[1-exp(-Z,)IN,,. (A.7)

at fy =
atr

Parameterization of fishing mortality

Fishing mortality is parameterized as:

log(F, ) =log(s,, ) +log(q,, ) +1log(E, ) +¢,, (A.8)

where

Sq 18 the selectivity coefficient for age-class a for fishery f,,

q,, 1s the catchability coefficient for fishery f, during time period ¢,

E,, s the fishing effort for fishery f, during time period 7, and

€y Isarobustified, normally distributed random variable, €, ~ N(O;stfr), representing relatively large transient deviations
in the effort — fishing mortality relationship (or simply, effort deviations).

A smoothing transformation is applied to the selectivity coefficients to account for the degree of length overlap between
adjacent age-classes. Let p, and 6, denote the mean length and standard deviation of age-class a fish (assumed to be normally
distributed) and let Q be a function such that Q! (u,) = a. Then, Q! (u,+8,6,) = i, +z,;, where i_, is the integer component
of the age, 0 < z,, < 1 is the fractional component of the age and , is a vector of points sampling the normal distribution of
length-at-age, expressed in units of standard deviations from the mean:

8, =[-15-1.0-0.5-0.2500250.51.01.5] k=-4,-3,..,3,4. (A.9)
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Then:

wk[siakfr (I_Zak)+siak+1,fr zak:| (A.10)

where

Siaf, 18 the purely age-based selectivity coefficient,

o 18 the length-smoothed selectivity coefficient, and

o,  are weights that are simple approximations to integrals of the normal distribution:

o, = hy [(hy +2h, + 2hy +2h, + 2, ); (A.11)
exp(=8,-8,/2) k=-2,-1,0,1,2
h, = (A.12)
2exp(=8, -8,/2) k=-4,-3,3,4.
Time-series structure in catchability is allowed by:
log(q,,1 ;) =1log(q,,)+M, (A.13)

where 1, is a normally distributed random variable, n,, ~ N(0; o’ s, ), representing small, cumulative changes in catchability
(or catchability deviations) that we assume occur at regular 1ntervals (»), in this case every three years. Within a year,
catchability is allowed to vary with a regular seasonal pattern:

log(g, ,; ) =1log(q), )+c,, sin[ 2T, [4=c,, )] (A.14)
where
q',, is the catchability coefficient before seasonal adjustment,
v, is an integer (1-4) denoting the quarter of the year pertaining to time period ¢,

¢y, is the fishery-specific amplitude parameter, and
Cy. is the fishery-specific phase parameter.

Modelling the length-frequency data

We assume that the lengths of age-class a fish comprising a (random) length-frequency sample of the catch of fishery f, in
time period ¢ are normally distributed about their mean p, with standard deviation ¢,. Then, the probability g,, that an age-
class a fish selected at random from such a length-frequency sample lies in length interval i is:

w —(Xl- _Ha)z
(.0 )= A.15
qza (“'a Ga) \/7 exp{ 2 2 } ( )

2no §

a

where
w is the width of the length intervals, and
x; 1s the mid-point of the ith length interval.
Note that this is an approximation to integrating over the length range (x; — w/2, x; + w/2) and is adequate as long as
G, > w (Fournier ef al. 1990). Then, the expected proportion of a length-frequency sample taken from fishery f,. during time

period ¢ occurring in length interval i is:

A
d
07y = 2 Pury; dra (A.16)

where p,,, is the expected proportion of age-class a fish in the length-frequency sample. p,, is related to predictions from
the age-structured dynamics by:

C”tfr
p‘”fr :A— (A17)
>C

t
=1 at fy
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The mean lengths i, are independent model parameters for a = 2—8 with u,,; 2 p,. For a = 9-20,

1_pa—l
1, =L1+(LA—L1){1_pA_1} (A.18)

where
L, isthe mean length of the first age-class,
L, isthe mean length of the last age-class, and
p  isthe Brody growth coefficient (Schnute and Fournier 1980; Fournier ef al. 1990).
Following Fournier ef al. (1990, 1998), the standard deviation of length-at-age is assumed to be a simple linear function of
length involving two parameters A, and A,:

1- a-1
G, = hexp xz[—nz P_ } . (A.19)
1-p

A, determines the magnitude of the standard deviations and A, determines the length-dependent trend. If A, = 0, the standard
deviations are length-independent.

Estimation of spawning biomass

The spawning biomass of the population is defined as:

4

SBN‘ = ZINKJN‘ S(J Wll’ (Azo)
3 2

w, =n(}1a+3uaca) (A.21)

where
SB,. is the spawning biomass at the beginning of time period ¢ in region 7,
S,  is the proportion of age-class a fish that are reproductively mature,
W,  is the mean weight of age-class « fish and
n is the scaling coefficient in the weight—length relationship W = nL>.
Estimates of S, were obtained from Itano (2000), while » was estimated from yellowfin tuna weight—length observations
(Secretariat of the Pacific Community, unpublished).

Appendix B. Population dynamics model for tagged yellowfin tuna

The dynamics of tagged yellowfin tuna are governed by equations analogous to Eqns A.1 through A.15, and the parameters
for the tagged fish (or simply tags, for short) and the general population are shared. The major modifications necessary for
modelling the tags are that recruitment is replaced by tag releases and that the tags are stratified by release cohorts. Let a
cohort, ¢, of tags be defined as a group of fish in age-class a =a€,€l released during time interval ¢ =t’fz in region r. Then, the
equation for tags analogous to Eqn Al is:

rel rel

a=a, ;t=tc

Ntag’
c

agel tgelr
’ rel
Ntagcatr = exp(— Za—l,t—l,r )Ntagc,a—l,t—l,r a, <a< A (B.1)
eXp(_ Za—l,t—l,r )Ntagc,a—l,t—l,r + exp(— Za,t—l,r )Ntagca,t—l,r a=4

Z., =XF . +M
atr % at fy a (BZ)
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where

Ntag’... 1sthe population of tags from release cohort ¢ in age-class a at the start of time period # in region r before movement
has taken place, and

Ntag,,, is the corresponding population after movement has taken place.

The ages-at-release of tags a’fl are not known and must be estimated from the lengths-at-release. We adopted a procedure

in which tag releases with length / are distributed to age-classes based on the approximate age-distribution of length / estimated
from the mean length- and standard deviation-at-age estimates at each function evaluation.
The numbers of tag recaptures Ctagf;fg, by cohort, age-class, time period and fishery are predicted by an equation

analogous to Eqn (A.7):

catf, —

pred F”ffr
Ctag = 7 [1-exp( _Zatr) 1 Tagcatr Xf, (B.3)

atr

where X, is the rate of tag reporting for fishery f,.

Because the fishing mortality for the tags is thus far assumed to be identical to that for the population in general, we are
assuming implicitly that the probability of capturing a tag is the same as that of an untagged fish. This assumption may be
violated soon after release, before the tags have had a chance to mix thoroughly with the untagged population. To correct for
this, we compute cohort-specific fishing mortality rates 7, for the tags for m time periods after release. /7, is determined
by solving Eqn (B.3) using the Newton-Raphson technique (see Press et al. 1988 for details) after setting
Ctagfé‘z‘;-r = Ctag?},’;r for the initial m time periods. Then, the substitution of 7, into Eqn (B.2), and similarly Z7,,, into Eqn
(B.1) ensures that the tagged population is correctly discounted for anomalous recaptures of recent releases. We judged that m
= 1 was sufficient to deal with problems of non-mixing of recent yellowfin tuna releases.

The movement dynamics and the parameterization of catchability and selectivity for the tagged population are as described

for the untagged population in Appendix A.

Appendix C. Log-likelihood functions

Total catch data

The objective function contribution for the observed total catches is given by:

2
e, :pc%z_{log(ucf‘;j)—1og(1+c}?;jd )} (C.1)
A
C tp;fd =>C, Y for fisheries with catches expressed in numbers of fish and (C.2)
r a=l1 r

pred 4 . . . .

C;p = 2C, W, for fisheries with catches expressed in weight. (C.3)
Jr a=1 Jr

The weighting factor p, is determined by the prior assumption made about the accuracy of the observed total catch data.
For yellowfin tuna catches, we assumed that p, = 100, which is equivalent to a residual s.d. of approximately 0.07. In other
words, we assume that the catches are observed with relatively little error.

Length-frequency data

Due to the large variability that commonly occurs in length-frequency data, the use of a robust likelihood function is essential.
The rationale and technicalities of this procedure are outlined in Fournier et al. (1990). They derived a robust log-likelihood
function based on an assumed normal distribution of Ql‘-’tl}rs , the observed proportion of a length-frequency sample, taken from
fishery f, during time period ¢, occurring in length interval i, and showed that this function is approximately equal to a self-

scaling, robustified, minimum % statistic. The contribution of the length-frequency data to the objective function is therefore:



Yellowfin tuna population model 959

0, =05 ZZ;log[ 2nC Ging /> +TE X log (Tiy,)
it fr t fr

( obs_ pred)2

T\t fr Ql'ffr

-X X Ylogiexp[ —————— [+ 0.001 ¢; (C4)
P 2(e, D,

&y =05y (120 ); (C.5)

it f

T =p, /min (5,,,1000) (C.6)

where

S, 1s the size of the length-frequency sample taken from fishery f, during time period 7,
is the number of length intervals in the samples, and

P, is a multiplier, set equal to 10 for the yellowfin tuna analysis, that recognizes that the variance of real length-frequency
samples is almost certainly much greater than truly random samples of a given size.

The term min(S,;,, 1000) reduces the influence of very large sample sizes by assuming that sample sizes of >1000 are no
more accurate than sample sizes of 1000. The constant 1// ensures that the variance term is not zero when Qj-’,‘}j =0, rendering
the model less sensitive to occasional observations of low probability. The addition of the constant 0.001 provides additional
robustness to the estimation. Note that, in contrast to Fournier et al. (1990), the variance {;,, is based on Qi‘;}’f rather than
Qg‘f‘;d. This change was introduced after analyses of simulated data (Secretariat of the Pacific Community, unpublished)

1
suggested that better model performance was obtained by using Q,?','}f to compute the variance term.

Tagging data

The likelihood functions that are most commonly used to model tagging data are the multinomial and the Poisson. However,
a problem common to both of these statistical models is that the variance is heavily constrained by the mean; typically, tagging
data are more variable than predicted because the recaptures of tagged fish are not completely independent events, which is
an assumption of these models. We have dealt with this problem by using the negative binomial distribution as the basis of the
likelihood function for the tagging data. The negative binomial allows the mean and variance to be fitted separately, with the
variance at least as great as the mean (Gelman et al. 1995). This model has the flexibility to allow greater variability in the
data than the Poisson model (which is its limiting case), and can therefore be considered as an overdispersed and robust
alternative to the Poisson for modelling tagging data. The general formulation of the negative binomial is:

o Cl
(0+a-1 B 1 B
p(e)_( . )(_BH][_BH] 0=0,1,2,...

E(@):%; Var(G)zl;iz(BJrl) .7)

where 0 is a negative binomial random variable and o and P are parameters. The use of the negative binomial in this context
is somewhat different to the normal usage where the data consist of multiple observations with constant E(8). Here, our data
consist of single observations of tag return numbers from many strata each having a unique E(0), which requires a different
parameterization. The variance and coefficient of variation can be written in terms of one of the coefficients (say, o) and E(0):

12
: (C.8)

wse)-£6) 1+ 20} cvie)- ey [ 1+ 22
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Let o be a function of E(0) and a constant @, which results in

12
cv(o)= E(e)“/2[1 +i] ;
(0]
a=wE@®) @>0). (C.9)

Note that E(8) /2 is the CV for a Poisson distribution; therefore the multiplicative term [1+X ]”2 represents the degree to
which the Poisson CV is expanded for overdispersion (CV(6)—E(8) /2 as @—>co).
Expressing ® as a fishery-specific parameter, the negative binomial likelihood function for the tagging data is:

Ctag®™ | +o. -1
[ gcatf; catf; ! o p (xcatf,f
cat
(=11 -

d
cat f; obs o , +Cl‘agpre ,
(O‘caz,f; ) Clagg gy} \etr T Realls

b:
pred Ct”g:?asrf/
cat f.

Ctag

pred ’
cat fy

ey f2 + Ctag

pred

o =(Gfr»Ctagcmfl: (CIO)

catfy

where the subscript f, represents the fisheries grouped for the purposes of the tag recaptures and @,; is the set of variance-
determining parameters (one for each fishery group) to be estimated. Taking the negative log of Eqn (C.10) and employing the

log-gamma approximation for factorial terms (Press et al. 1988) gives the contribution of the tagging data to the objective
function:

O,=-3% logl"(Clagmf +0€mf )—logl"((lcwf;)—logl"(cmgf:jf +1)

cat f}
pred
+ CLear rr [1Og ( OLcatf’f )_ log (acatfr' + Ctagcatf; )]

obs

red
+Ctag,,, ;. [10g( Cfagwtf )—log( eary: +Ctagfae,f;)]. (C.11)

Appendix D. Priors and penalties

Priors and smoothing penalties are used to constrain the parameterization of the model. Priors or penalties that result in non-
trivial contributions to the objective function in the reference analysis are described below.

Effort deviations

The prior distributions for the effort deviations &, (Eqn A.8) are assumed to be a mixture of a normal distribution with zero mean
and the variances related to the constants p, ., and a ‘contaminating’ distribution to increase the probability of observations in the
tails of the normal distribution. The contribution to the objective function of the prior for the effort deviations is:

2 PesNE
0, = —;Zlog exp(— Py NE gtfr) +0.05 exp ——5 g |l (D.1)
r t ’ ’ ’
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The second term within the square brackets is the overdispersion term to enhance robustness. Note that the €, are weighted
by a fishery-specific weight py,, and by the square root of the normalized effort for that time period. This ensures that
observations of very low effort have relatively little impact on the objective function through the effort deviations. The generic
weight p,, is related to the variance Géﬁ’ of g, at average effort:

1
P, =—. (D.2)
o 20-82f,.

Therefore, a relatively high value of p,, results in small deviations from the observed effort while a relatively small value
of p,, allows the model greater flexibility to deviate from the observed effort data if this results in a better overall fit to the
total data. For the yellowfin tuna analysis, effort data were not available for the PR, PH and IN fisheries. In this case we made
the minimal assumption that effort was constant, but set p., to 1 (CV of exp(e ;) = 0.80) to allow the model to, in effect,
estimate the effort for these fisheries most consistent with the overall data. For the purse seine fisheries, we assumed that effort
estimates were less reliable than those for the longline fisheries, hence we set pg, for the purse seine fisheries to 10 (CV of
exp(€ ;) = 0.22) at the average level of effort) and for the longline fisheries to 100 (CV of exp(e ;) = 0.07) at the average level
of effort). This relatively low level of variability for the longline fisheries was assumed because the longline effort data were
pre-standardized using a habitat model. Note that these assumptions regarding variability only refer to the normal component
of the effort-deviation priors. The prior probabilities are also influenced by the overdispersion term in Eqn (D.1).

Catchability deviations

The prior distributions of the catchability deviations 1, (Eqn A.14) are assumed to be normally distributed with mean p,,,
and with the variance determined by the constant p, ;. The contribution to the objective function is:

2
On =L, Loy 0, ) (D3)

The constants p, . were set at 50 (CV of exp(n ) = 0.10) for all purse seine fisheries. For the PR, PH and IN fisheries, p, .
was set to 1 (CV of exp(n ;) = 0.80) in order to allow maximum flexibility to estimate catchability where an assumption about
fishing effort was required. The means p,, of the prior distributions were set to zero. Catchability deviations were fixed at
zero for the longline fisheries, consistent with an assumption of constant catchability.

Seasonal catchability

The seasonal catchability amplitude parameter ¢;, has a prior distribution that is normally distributed with a mean of zero and
variance determined by the constant p; = 0.1. The contribution to the objective function is:

0, =p.ciy . (D.4)

Recruitment deviations

The spatially aggregated recruitment deviations ¢, are assumed to be normally distributed with zero mean and a variance
determined by the constant p,. We also assume a small amount of auto-correlation in the recruitment deviations. The
contribution to the objective function of the prior for the recruitment time-series deviations is:

T—4 5
=220 4013 (90s-0,)" (D.5)

The weight p,, is set to a small value (1.4) in order to allow relatively large variance for @, (resulting in a spatially aggregated
recruitment variation of about one-third to three times the average). The second term of Eqn (D.5) introduces a small penalty
on the difference between recruitment deviations in the same quarter of successive years, thus providing a small amount of
auto-correlation in the @,.

We also apply a small penalty on deviations of spatially aggregated recruitment, 7€(p,, from that predicted by the stock-
recruitment relationship. Let R, be the spatially aggregated equilibrium recruitment resulting from the spatially aggregated
spawning biomass, SB,_;, where / is the lag between spawning and recruitment (assumed to be three months for yellowfin tuna).
We use the Beverton and Holt (1957) stock-recruitment relationship:

o'SB,_,

R =
B'+SB,_,

(D.6)
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where 0" and " are the stock-recruitment parameters. The asymptotic recruitment parameter o” is determined analytically,
while " is estimated as a model parameter. The penalty for deviations from R/ is given by:
T _ 2
Oy =Py §l[log(R<pt)—log(Rt )] (D.7)
+

where p, = 1 allows relatively large deviations to occur.
The time-series deviations from the average spatial distribution of recruitment, v, ., are assigned weak prior distributions of
mean zero. The contribution of this prior to the objective function is:

0, = p, XX llog(y,,))" (D.8)

where p, = 0.1.

Movement coefficients

The prior distributions of the movement parameters ¢y” and ¢;” have zero mean and a relatively high s.d. (~0.3):
Xy 2 X, 2
®¢:p¢[2(¢oy) +(¢1y) ]. (D.9)
xy

where p, = 5. The effect of these priors is that, in the absence of any information in the data regarding movement into or out
of a particular region, movement will tend towards zero.

Tag-reporting rates

The prior distributions for the tag-reporting rates are fishery-specific and are based in some cases on the results of tag-seeding
experiments (Hampton 1997). The contribution of the reporting-rate priors is:

Or =X p, (X, —hy) ? (D.10)

where p, is determined by the reporting rate variance and p is the mean of the prior distribution of the reporting rate. For the
non-longline fisheries (fisheries 1-9), we specified the prior distributions according to estimates of reporting rates and their
variability obtained by Hampton (1997). For the longline fisheries, relatively uninformative priors with high variance were
specified, thus allowing the longline fishery reporting rates to be determined largely by the model data. Details of the reporting
rate priors are given in Table D1.

Table D1. Tag-reporting rate prior distributions

Fishery Mean Standard deviation Pf,
Philippines and Indonesia domestic 0.80 0.07 100
Purse seine 0.59 0.05 234
Longline 0.50 0.17 17

Selectivity curvature

Selectivity curvature is constrained by a penalty based on the second and third differences of the selectivity coefficients:

A-2 2 A3 2
@s = ;‘psl z—:l (Saf, - 2Sa+l,fr + Sa+2,f, ) + psz z—:l (Safr - 3Sa+1,fr + 3sa+2,f, - Sa+3,f, ) (Dl 1)
where p and p, are set to 0.001.

Natural mortality rates

The natural mortality rates M, are constrained by moderate smoothing penalties to avoid large changes in M, between
successive age classes and extreme deviation from the mean. These smoothing penalties are:

A2 ’ ’ ’ 2 A1 ’ ’ 2 & N 2
Oy =Py, 2—41 (Mg =2M gy + M) "+ Py, Z_,I(Ma —M) "+ Py, E_,I(Ma) (D.12)
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where M, = log(M,) ~Xlog(M,)/4 and py; , p,,, and P, are weights equal to 25, 5 and 10, respectively.

Appendix E. Estimated parameters, priors and other constraints for the yellowfin tuna model

Parameter category Symbol Number of Prior distribution Other constraints
parameters
Spatially aggregated average R 1 Uninformative
recruitment
Stock-recruitment parameter B’ 1 Uninformative
(spatially aggregated)
Spatially aggregated recruitment 0, 151 Weak, mean of 0 Weak smoothing penalty, ¢, =0,
deviations very weak penalty on deviation
from stock-recruitment relationship
Average spatial distribution of o, 6 Uninformative To,.=1
recruitment
Recruitment spatial distribution Vi 906 Weak, mean of 1 l;lyt, =1, % oY, =1
deviations
Age-dependent natural mortality M, 20 Uninformative Moderate smoothing penalty across
age
Movement parameters oy, of 36 Weak, mean of 0
Selectivity Saf; 187 Uninformative Range 0-1, increasing function of age
for LL1-LL7, moderate smoothing
penalty across age
Catchability in year 1 qifr 10 Uninformative
Catchability deviations Ny 71 Various (see text)
Seasonal catchability cif,, Cyp, 26 Weak, mean of 0 (fish. 4-16)
Effort deviations & ) 1941 Moderate, mean of 0
Mean lengths-at-age for age classes 7 Uninformative Increasing with age
2-8
von Bertalanffy growth parameters L;, L, 3 Uninformative
Variance of length-at-age Ao Ay 2 Uninformative
Tag-reporting rates X 16 See Table D1 Range 0-1
Negative binomial parameters (D ’ 13
Total 3397
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