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a  b  s  t  r  a  c  t

We  investigate  the potential  of  verifying  whether  individual  purse  seine  sets  were  made  in associa-
tion  with  a fish  aggregation  device  (FAD)  or  on an unassociated  (FAD-free)  tuna  school,  on the  basis  of
low  intensity  catch  sampling  by  onboard  observers.  The  target  tuna  catch  and  length  compositions  and
bycatch  amounts  were  analyzed  from  more  than  50,000  purse  seine  sets  sampled  by  onboard  observers
who  had,  in  addition  to  collecting  sampling  data  on  species  and  size  composition  of  target  tunas  in  the
catch,  and  set-level  estimates  of  total  bycatch,  also  identified  the  sets  as  either  “associated”  or  “unasso-
ciated”.  Classification  tree  (CT)  models  were  developed  based  on  2007–2011  observer  data  and  tested
for  misclassification  error  rates  on  2012  data.  Two  types  of  model  misclassification  errors  (MCE)  are  pos-
sible: unassociated  sets  misclassified  as  associated  (termed  false  positive  or Type  I) and  associated  sets
misclassified  as  unassociated  sets  (false  negative  or Type  II  error).  A third  error  measure,  overall  MCE,  is  a
weighted  average  of  Type  I and  Type  II errors.  The  classification  rules  developed  on the  basis  of  observer
catch  sampling  tended  to be  nearly  presence/absence,  e.g.  greater  than  99% skipjack  composition  or  pres-
ence  of 0.5 kg  rainbow  runner,  likely  keyed  by  the  modest  observer  sample  sizes.  Overall  MCE  rates  were
21.8% for  the  initial  tuna-only  CT  model  and  14.4%  for the  bycatch-included  model.  The  improvement  in
overall  classification  for  the  bycatch  models  derived  principally  from  a reduction  in Type I errors.  The
addition  of auxiliary  non-sampling  variables  (e.g.,  longitude,  month)  and  use  of  more  complex  resampling
extensions  to CT modelling  led to little to no  improvement  in  MCE  rates.  We  employed  our methodology

to  analyze  a  particular  subset  of the  purse  seine  data,  i.e.,  sets from  the  FAD-closure  periods  of  2009–12.
The  intent  was  to determine  if MCE  rates  of these  particular  sets  were  greater  than  the  MCE rates  found  in
the more  general  analysis.  Reassuringly,  the  MCE  rates  of  sets  during  the  FAD  closure  period  were  found
to  be  equal,  or  even  a  bit  lower  than MCE rates  in  the  broader  analyses  based  on our  best  performing
model.

©  2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND

consumers.1 As part of the increasing consumer scrutiny related to
seafood sustainability, increasing numbers of sea food purchasers
. Introduction

Purse seine catches are generally categorized as either “unasso-
iated” or “associated” with fish aggregation devices (FADs). Purse
eine fishing, specifically targeting skipjack (Katsuwonus pelamis)
nd yellowfin (Thunnus albacares) tunas, but also taking small
mounts of bigeye (Thunnus obesus)  tuna, has grown substantially
ver the past three decades in the Western and Central Pacific
cean (WCPO), increasing from around 100,000 mt  in 1980 to

early 1.8 million mt  in 2012 (Harley et al., 2012). Unassociated,
r free-school, fishing accounted for the majority of purse seine
atches up until the mid-1990s; since that time catches have been

∗ Corresponding author.
E-mail address: stevenh@spc.int (S.R. Hare).
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/).
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

near evenly split between unassociated and associated sets. In this
context, the term “... Fish Aggregation Device (FAD) means any man-
made device, or natural floating object, whether anchored or not,
that is capable of aggregating fish.” (WCPFC, 2009)

Concerns over the composition of catches associated with FAD-
fishing have led to recent calls to regulate FAD-fishing, either
via regulatory actions (Fonteneau et al., 2013), or educating
seek tuna that have been certified to be free school caught.2 In

1 WWF.  2011. WWF  statement on fish aggregation devices (FADs) in tuna fish-
eries. Position paper available at: http://awsassets.panda.org/downloads/tuna fad
position november 2011 .pdf.

2 IGA, undated. Sustainability statement. http://iga.com.au/support/about-iga/
sustainability/.
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Table  1
Summary of observed purse seine set data used in analysis. Abbreviations are as follows: FAD – fish aggegation device; UNA – unassociated; ASS – associated.

Non-FAD closure sets FAD closure sets Total sets
UNA  ASS Total UNA ASS Total UNA ASS Total

2007 1133 2286 3419 1133 2286 3419
2008  1270 2186 3456 1270 2186 3456
2009  984 2545 3529 796 419 1215 1780 2964 4744
2010  5458 5401 10859 2679 280 2959 8137 5681 13818
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present. The database from which these data were extracted repre-
sents a filtered, quality-controlled, subset of the total database (for
example, we excluded data for the first trip by a new observer).
Additionally, this analysis is restricted to observed sets with both
2011  4241 9094 13335 1881 

2012  3033 4724 7757 2260 

Total  16119 26236 42355 7616 

eneral, FAD-associated catches contain a higher proportion of big-
ye tuna, a greater array of bycatch species and typically smaller
ized fish than unassociated schools (Dagorn et al., 2012). A FAD-
losure period, covering the months of July (since 2010), August and
eptember (since 2009), has been instituted annually since 2009 by
he Western and Central Pacific Fisheries Commission (WCPFC), the
nternational body responsible for management of the WCPO tuna
sheries.

The WCPFC mandated 100% observer coverage starting with the
010 fishing year (WCPFC, 2013). Prior to 2010, observer coverage
f purse seine catches was in the vicinity of 20%, and actual observer
overage levels since 2010 have been around 65% (Williams, 2014).
ll purse seine vessels operating in waters of nations within the
CPO are required to complete vessel logs for every set, including

lassifying sets as unassociated or associated. Observers also rou-
inely record set association for every set while aboard a vessel.
espite this duplicate recording of set type, there remains demand

or an independent determination of set type (Harley et al., 2009).
or example, such a determination might be useful in retrospec-
ive analyses such as examining performance of new observers.
bserver determination of set type might be either purposefully or

nadvertently incorrect, e.g., the observer might be unaware that
 set is associated with a FAD, given that FADs can be objects as
mall as pieces of rope or floating garbage bags. Historically, whale
harks and, possibly, turtles or marine mammals, have also served
s natural FADs. We  note, however, that setting of purse seines on
ncidental or natural FADs has become extremely rare given the vast
eployment of satellite, and often sonar-equipped, FADs which are
elieved to number in the tens of thousands in the WCPO.3

We  fit a sequence of classification models of increasing com-
lexity to predict purse seine set association. We  start with the use
f observer-collected sampling data and then explore the utility
f additional non-sampling (“auxiliary”) predictors. The simplest
odels look for consistent differences in observer-collected sam-

ling data, specifically relative species composition and length
ompositions of the tuna catches and, optionally, the amount and
pecies of bycatch present in the set. More complex models make
se of bootstrap techniques applied to the observer sampling data,
nd are then fitted with the auxiliary predictors to attempt to
mprove set association prediction. For each model and dataset, one
ubset of the data is used to “train” the models and these models
re then applied to another subset, the test data, which were not
sed in model fitting. Our approach here is to initially develop rela-
ively simple and robust classification rules and we then extend the

ethodology to determine if more complex models and auxiliary
redictors increase purse seine set association prediction.
For the purposes of model development, historical observer
et type classification is taken as “truth”. We  feel this to be valid
oth because much of the data were collected during periods

3 Pew Environment Group. 2014. Estimating the use of drifting Fish Aggrega-
ion Devices (FADs) around the globe. Discussion Paper available at http://www.
ewtrusts.org/ ∼/media/legacy/uploadedfiles/FADReport1212pdf.pdf.
711 2592 6122 9805 15927
825 3085 5293 5549 10842
2235 9851 23735 28471 52206

when there was  little incentive on the part of vessel operators
to misreport set association (and possibly pressure observers to
do likewise). However, concerns over potential “contamination”,
i.e., intentional mis-labeling, did lead us to isolate purse seine sets
from the FAD closure periods during 2009–2012. While there are
spatial and national exceptions by which setting on FADs is still
allowed during the FAD closure period, broad regions are open only
to free school purse seining. Possibly clandestine FAD setting and/or
routine labeling of sets as non-FAD associated without observer
verification constitute potential avenues of set type intentional
mis-labelling. The classification models developed in this analy-
sis were trained and tested on datasets without the FAD closure
data; we conclude the analysis with an examination of the perfor-
mance of the preferred classification models on prediction of FAD
association for the FAD closure dataset.

2. Materials and methods

The data used in this analysis come from the Secretariat of
the Pacific Community (SPC) maintained observer database that
contains observations on purse seine operations from 1993 to the
Fig. 1. Locations of all observed purse seine sets, separated by set type, for the
period 2007–2012. Size of individual circles is proportional to total target tuna catch.
Exclusive Economic Zone boundaries are informal and purely illustrative.

http://www.pewtrusts.org/
http://www.pewtrusts.org/
http://www.pewtrusts.org/
http://www.pewtrusts.org/
http://www.pewtrusts.org/
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ig. 2. De Finetti (ternary) plots summarizing relative catch composition of the thre
o  determine the percentages of the three tuna species at a particular location in a g

ix  of tuna catch proportions.

ecorded target tuna catch as well as recorded tuna lengths. For pur-
oses of data summaries and model fitting, we limited the dataset
o the 2007–2012 time frame. Table 1 lists the number of observer-
lassified purse seine sets, with associated sets comprising 54.5% of
ll sets over the 2007–2012 time frame. The spatial distribution of
he sets shows essentially complete overlap between the two set
ype associations (Fig. 1).

The 52,206 sets comprise 73.2% of all observed sets in the fil-
ered database. Years earlier than 2007 represent a time period
hat is likely less relevant to more recent years in terms of fishing

ethods, areas, or catch composition. Data for 2013 are at present
ery incomplete and not representative with respect to areas and
easons so were not included. Over the past six years there have
een roughly similar numbers of FAD-Free (“unassociated”) and
AD-Associated (“associated”) observed sets. The proportion of
nassociated sets has generally increased since 2010, coinciding
ith both increasing total purse seine effort and implementation

f the FAD-closure periods within the WCPO. A total of 9851 sets
re from the FAD closure periods of 2007–2012. These sets were not
ncluded in the development or testing of the classification mod-
ls, but were held aside for subsequent testing with the preferred
lassification models. To summarize, the training data consisted
f 34,598 sets (non-FAD closure data, 2007–2011), the test data
onsisted of 7757 sets (non-FAD closure data, 2012); and the 9851
AD-closure sets were examined for evidence of potential inten-
ional mis-labeling.
The observer data used in the analysis were collected using a
ethod termed “grab sampling” which has been consistently uti-

ized dating to the start of onboard purse seine set sampling.In
ssence, the observer is instructed to randomly collect five tuna

able 2
ean catch and frequency of occurrence of edible bycatch species in observed purse

eine sets.

Unassociated Associated

Name Abbreviation kg/set occurrence kg/set occurrence

Barracudas bar 0.07 0.4% 2.62 2.9%
Black marlin blm 6.33 3.6% 7.61 4.4%
Blue marlin bum 10.25 6.6% 16.49 8.4%
Dolphinfish dol 1.09 1.6% 29.43 26.0%
Striped marlin mls  2.20 1.5% 3.81 2.5%
Rainbow runner rru 6.98 2.6% 119.35 63.5%
Sailfish sfa 0.52 1.0% 0.45 0.8%
Wahoo wah  0.35 0.9% 11.23 16.9%
et tuna species for associated and unassociated purse seine sets. An example of how
is provided. Density indicates relative proportion of total sets having the indicated

from each brail used to empty the purse seine net. Mean grab sam-
ple size from each set is 65 fish though variability in sample size is
very large, consistent with the nature of purse seine set catch sizes.
To put this “low intensity” sampling rate into perspective, a 100%
skipjack set typically averages 30 mt;  at an average weight of 3 kg,
the observer sample of 65 skipjack represents 0.65% (195/30,000).
Bycatch data are not subsampled; observers utilize a variety of
means of estimating full set weights of all non-target species. While
quantifying bycatch is considered a “secondary” observer prior-
ity, experienced observers are considered capable of enumerating
bycatch, particularly the “edible” species that are often separated
and retained from the set. The perceived importance of bycatch
enumeration, both for stock assessment and management pur-
poses, has also led to increased training in bycatch estimation in
recent years.4

Potential covariates, or predictor variables, for classifying set
type were (1) tuna species composition; (2) various measures of
tuna length; (3) species bycatch per set; and (4) non-sampling vari-
ables related to the time and place of fishing. These categories are
discussed in turn.

2.1. Tuna species composition

In Fig. 2, the relative proportions of the three target tuna species,
within associated and unassociated purse seine sets, are presented
in ternary, or De Finetti, plots (Fonteneau et al., 2010). These plots
illustrate that both associated and unassociated sets are most often
comprised of 90+% skipjack. However, at least two  differences in
relative catch composition between the two set types are also evi-
dent. Unassociated sets targeted on skipjack tend to be purer, and
there are occasional sets that are nearly 100% pure yellowfin. Asso-
ciated sets most frequently contain 10–20% yellowfin and/or bigeye
tuna. In the results section, these three variables are abbreviated as
SKJ.pct, YFT.pct, and BET.pct, representing the percentage of skip-
jack, yellowfin, and bigeye tuna, respectively in the grab samples
for the set.

2.2. Tuna length composition
The three target tuna species captured in unassociated sets tend
to have a larger size distribution than those in associated sets

4 Pers. comm., Peter Sharples, Observer and Port Sampler Coordinator, SPC.
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Fig. 4. Boxplots of distribution of mean lengths for three target tuna species broken
down by set association. The shaded regions show the 25th and 75th quantile while
the black bar is the median. Outliers are illustrated by circles, and often represent
ig. 3. Size distributions for the three target tuna species, measured by observers b
ach  distribution is indicated by n.

Fig. 3). Small yellowfin tuna (≤50 cm), in particular, are not com-
only caught in unassociated sets, but form the bulk of yellowfin

atch in associated sets. We  computed the mean lengths of skipjack,
ellowfin and bigeye tuna for each set in which any of these species
ere captured. The 25th, 50th and 75th length quantiles were also

omputed, but early analyses showed no improvement over use
f simple mean length, and they were dropped from the analysis.
ig. 4 shows a boxplot of the differences in mean length distribution
etween set types. These variables are abbreviated SKJ.len, YFT.len,
nd BET.len where “len” is interpreted as mean length in the set.

.3. Bycatch composition

Bycatch data, estimated total weight per set, were lim-
ted to the eight most common “edible species” – barracudas
Sphyraena spp.), black marlin (Istiompax indica),  blue marlin
Makaira mazara), dolphinfish (Coryphaena hippurus), striped mar-
in (Kajikia audax), rainbow runner (Elagatis bipinnulata), sailfish
Istiophorus platypterus), and wahoo (Acanthocybium solandri)).

ith the exception of rainbow runner, dolphinfish and wahoo in
ssociated sets, the bycatch rates of the eight most common bycatch
pecies are very low (Table 2), but we chose the edible species
s these were most likely to be retained and thus their presence

ore easily observable. Bycatch species name abbreviations used

or naming conventions in the results section are listed in Table 2,
ollowed by mean total weight and frequency of occurrence per set.
n examination of the fate of these species indicated that 20–60% of

single measurements, i.e. only one fish caught in a set. Tuna species abbreviations
are: skipjack (SKJ), yellowfin (YFT), bigeye (BET); UNA indicates unassociated sets
and ASS indicates associated sets.
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sh might be retained (varying by the flag of the vessel and unload-
ng port) and much of the retained fish is consumed onboard by the
rew. We  note that while sharks are a common bycatch in associ-
ted sets, a strict no-retention policy for certain species makes use
f shark bycatch data less suitable for set type determination.

.4. Non-sampling variables

We  complemented the observer-collected sampling data with a
et of variables relating to the temporal, spatial and environmental
haracteristics of each purse seine set.

. Temporal – year (2007–2012), month (1–12).

. Spatial – latitude (∼30◦S–30◦N), longitude (∼135–205◦E).

. Environmental – sea surface temperature (SST), monthly 1◦ × 1◦

mean value where purse seine catch was taken, as indicated from
the Reynolds–Smith Optimally Interpolated Version 2 dataset
(Reynolds et al., 2002).

. Associated – total purse seine set weight, vessel flag and
Exclusive Economic Zone (EEZ). EEZ and vessel flag are country-
specific referencing national waters where fishing took place and
the nationality of the fishing vessel, respectively.

There has been relatively little work done to date on the sub-
ect of predicting FAD-association from catch-related data. Pallarés
t al. (2003) used two  variables – an average sample weight and

 catch diversity index – to assign unobserved catches as either
nassociated or associated. Their analysis, however, was  based on
ery small sample sizes and the intent was to classify sets for his-
orical purposes and no cross-validation was conducted. In a more
ecent study, Lennert-Cody et al. (2013) used a classification tech-
ique known as “random forests” to determine set association for
he purposes of estimating dolphin mortality associated with purse
eine fishing.

Random forests is a technique within the more general set of
ethods collectively referred to as Classification and regression

ree-based methods. Tree-based models have found widespread
pplication in the fields of decision-making and prediction. Our
nalysis is comprised solely of classification tree-based models as
hey are used to predict factors (purse seine set association in our
nalysis); regression trees are used to predict values. The predictor,
r classification, variables can be either categorical or continu-
us.Each step of the decision is conditioned on a “branch” of the
ecision tree, each branch of which is determined through a recur-
ive estimation process. This method lends itself to establishing a
et of simple rules that can be used to estimate whether a sampled
urse seine set is likely to be FAD-unassociated or FAD-associated.
odels are developed by sequentially identifying variables that

est separate the data into similar categories, continuing until the
ecreased improvement in classification does not warrant addi-
ion of more predictor variables. Variable importance for CT models
s computed for each variable based on the decrease in the Gini
mpurity index (Breiman et al., 1984).

The simplest method, hereafter referred to as the CT model, pro-
uces a single prediction tree, with the model utilizing the full set of
redictor variables and values. All data analyses conducted herein
ere based on the R Programming language (R Core Team, 2013)

nd the CT model fits used the “rpart” package (Therneau et al.,
013). The two main CT model fitting control parameters in rpart
re the “complexity parameter” (cp) and “minimum branch size”
minsplit). For all CT model fits, the settings for these two  param-

ters were: cp = 0.01 and minsplit = 30. A strength of CT models is
he allowance of missing values; a hierarchical decision process
nsures that a classification can always be made. The importance
f this feature is further discussed under random forests and the
rch 172 (2015) 361–372 365

implementation methodology illustrated by example in the Results
section.

Following the initial CT modelling, we then utilized more com-
plex methodologies that use bootstrapping techniques to see if
misclassification rates could be improved upon. The method of
bagging predictors (“Bootstrap aggregating”, Breiman, 1996) –
hereafter, BP model – is based on building CT models for a num-
ber of datasets, each a bootstrap replicate of the original dataset.
The BP model prediction is a plurality (majority in the case of a
binary response variable) vote among the bootstrapped CT models.
Per the original paper describing the method (Breiman, 1996): “the
vital element is the instability of the prediction method. If perturb-
ing the learning set can cause significant changes in the predictor
constructed, then bagging can improve accuracy.”

BP models have several adjustable parameters, e.g., the size of
bootstrap samples, the number of trees to construct, the minimum
branch size, etc. For this analysis, we  explored a number of settings.
Some of the settings can result both in data overfitting and sub-
stantial increases in computing time, possibly with little increase
in predictive power. We  ultimately chose the following settings
that provided a balance of complexity and close to best predictive
power. Bootstrap samples were of size n out of n with replacement
(where n is the number of sets in the training sample); 30 trees
were constructed, minimum branch size was set to 100 (i.e., no
branches with fewer than 100 observations are split off), and the
complexity parameter was set to 0, meaning that any data split that
increases overall model fit (subject to other parameter settings) is
pursued. All BP models were fitted using the “ipred” package (Peters
et al., 2015). Also, as BP models are, at their core, an ensemble of CT
models, they also allow for missing data. The decrease in the Gini
impurity index for each variable is summed across the models and
plotted to illustrate relative variable importance.

The third set of models we used were random forests (Breiman,
2001), hereafter RF models. Widely used in other disciplines, RF
models are relatively new to ecology (Cutler et al., 2007). RF models
have a number of attractive features, including being nonparamet-
ric, efficient in handling large data sets, and being fairly robust to
overfitting issues (Yi, 2012). The general idea behind RF models is
to extend bagging by constructing trees from subsets of the pre-
diction variables. In this way, a “random forest” of trees, each built
from subsets of the data and using a subset of variables, is built to
produce more robust predictors. Typically, two-thirds of the train-
ing data set is used to develop the forest and the remaining “out of
bag” values are used to test the predictors. We  fit RF models using
the randomForest package (Liaw and Wiener, 2015).

RF models have two basic parameters, the number of variables
used at each node and the number of trees in the forest, and the
model tends not to be very sensitive to their values (Liaw and
Wiener, 2002). For all analyses, we used the randomForest default
values of sqrt(p), where p is the number of variables and 500 trees,
respectively. A third parameter, class weight, can be adjusted to bal-
ance prediction error. We develop two  sets of RF models, one that
minimizes total prediction error (unequal error rates) and a sec-
ond that minimizes total error subject to error types being of equal
magnitude (balanced error rates). RF models can handle missing-
observation data, typically by imputing values based on proximity
measures. However, our dataset contains substantial “not applica-
ble” (NA) data that cannot be imputed. The three average length
variables take on values only when there are catches of those tuna
species in the purse seine set. Imputing average length values for
sets with no catches of a tuna species would be inappropriate. The
RF models were fitted without the average length variables because

the incidence of zero catch for any of the three species in any given
set, hence no average length values, is quite high and RF models
would require deletion of all sets with N/A average length val-
ues. While alternative measures to quantify the relative importance
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Table  3
Description of the misclassification error (MCE) types and formulas for computing
MCE  rates. Abbreviations are UNA (for unassociated) and ASS (for associated).

Error type Description MCE  rate calculation

Type I False positive:
unassociated set
misclassified as
associated set

No. UNAsetsmisclassifiedasASSsets
TotalNo.ofUNAsets

Type II False negative:
associated set
misclassified as
Unassociated set

No.ASSsetsmisclassifiedasUNAsets
TotalNo.ofASSsets

Overall Type I + Type II No.misclassifiedsets
Total No. ofpurseseinesets
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rates for the training data itself, not the test data to which these
models are subsequently applied.
f variables across the forest of models are available (Nicodemus,
011), we report only the Gini Impurity Index, consistent with out-
ut reported from the other methods.

We fitted and compared five model/dataset combinations as
ollows:

 CT1, sampling data only.
 CT2, sampling and auxiliary data.
 BP, sampling and auxiliary data.
 RF1, sampling data (minus average length variables) and auxil-
iary data, unequal error rates.

 RF2, sampling data (minus average length variables) and auxil-
iary data, balanced error rates.

All five models are fitted such that an overall misclassification
rror (MCE) rate is minimized for the training data set. This over-
ll MCE  rate is a mix  of two types of misclassifications, which are
eferred to as Type I and Type II errors. Type I, or false positive, errors
re unassociated sets misclassified by the model as associated set;
ype II, or false negative, errors are associated sets misclassified by
he model as unassociated sets. The calculation of the two  types of
rrors is as described in Table 3. The overall MCE  rate is a weighted
verage of the two error types, and thus always falls between the
wo. For the second of the two RF models, we adjust the class weight
arameter such that Type I and Type II error rates are equal; this has
he effect of increasing the overall MCE  relative to the RF1 model.
t is important to bear in mind that while we report MCE  rates for
oth the training and the test data, ultimately it is only the test data
CE rates that illustrate actual predictive utility. We  also note that

he CT models yield easily interpreted, easily applied, classification
ules; the other models are of the “black box” variety requiring use
f a computer to generate classifications and interpret classifica-
ion rules. We  use the measure of MCE  rate to illustrate how often
ur models fail to correctly predict set association. The success rate
f the models is simply 100 minus the MCE  rate thus a 20% MCE
ate can also be positively viewed as an 80% success rate.

To compare and contrast the relative importance of the predic-
or variables across models, we rescaled the Gini Importance Index
alues for each model such that the most important variable had a
alue of 1.0 and all other variables were computed as a proportion
f the maximum Gini value for that model.

Following testing of the five models on the 2012 dataset, we
pplied the preferred model to the FAD-closure dataset. Concern
ver possible misclassification, either involuntary or deliberate,
as viewed as reason to set these data aside during model develop-
ent. We  applied the classification models (using both tuna-only
nd with-bycatch variables) to the FAD closure data to determine
f MCE  rates were greater than for the non-FAD closure data.
rch 172 (2015) 361–372

3. Results

The modeling results are presented in pairs for each of the model
types. The first of each model pair, termed “tuna-only”, uses only
tuna species composition and mean lengths to develop the clas-
sification models. The second of the model pairs, “with-bycatch”,
includes the bycatch species as possible classifying variables. Aux-
iliary predictors are included in all pairs of models except the initial
CT1 models.

3.1. Classification tree model (CT1) using just observer-sampling
data

The CT model developed from fitting to the 2007–2011 data,
using only tuna composition and mean length data, is illustrated
in Fig. 5 (left panel). This is the simplest of all models, but as all
other models are generalizations or extensions of this basic model,
we provide a fuller explanation of model interpretation. The first
classification rule (SKJ.pct <99.8) divides the initial data set into
two halves: sets with a skipjack composition of less than 99.8% and
sets with composition greater than or equal to 99.8%. This implies
that among the predictor variables, this partition point provided
the highest initial rate of correct separation into “U” (unassociated)
and “A” (associated) sets. Of course, there are instances of both set
types above and below the classification rule, and additional rules
are then added to attempt to better classify the two  groups. The
structure of the classification tree is such that any sets for which
the answer to the condition is “yes” proceed to the left while those
for which the answer is “no” proceed to the right.

Three lines of information are contained in each node. The first
line is which set type has the majority of observations. The sec-
ond line lists the number of “incorrect” observations over the total
number of observations in that node. The third line lists the per-
centage of the total observations described in that node. Thus, the
top node shows that a majority of the sets are “A” and that 13,086
are “incorrect” (in that they are actually “U”) and the total number
of sets is 34,598 (100% of non-FAD closure sets for 2007–2011). Sets
for which the answer to the first condition was  “no”, are split off to
the right and form a terminal node. This node is classified as “U’;
there are 2561 incorrect classification out of 10,652 sets assigned
to that node and these sets comprise 30.8% of all sets. On the basis
of available predictor variables, there is no rule that can further
refine those sets, subject to the complexity parameter and mini-
mum  branch size settings. Sets for which the answer to the first
condition was “yes” are split to the left, where they are subjected
to a second classification. This condition asks whether skipjack per-
centage in the catch is greater than or equal to 2.05%. If the answer is
yes, those sets are sent to the left where they form a terminal node,
classified as “A”. Those sets for which skipjack percent was less than
2.05% proceed to the right and form a terminal node classified as
“U”. Multiple use of the same variable (such as SKJ.pct in this case)
is not uncommon as more branches are developed in refinement of
the classifications.

Each of the three terminal nodes has both correctly identified
and incorrectly identified set types. The node classified as “A”, has
3307 sets that were misclassified as “A”; these constitute the Type 1
error – 3307 out of 13,086 total “U” sets were misclassified (25.3%).
The other two nodes, both classified as “U”, had 502 and 2561 mis-
classified “A” sets; added together these for the Type II error – 3063
out of 21,512 “A” sets (14.2%). The overall error is then computed
as the sum of all misclassified (3307 + 502 + 2,561) divided by total
sets (34,598), for a MCE  of 18.4%. We  note that these are the MCE
Fig. 5 (right panel) shows the classification model for 2007–2011
data when bycatch species are allowed as predictor variables. In
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Fig. 5. Classification rules and node statistics for the two classification tree models devel
rates  are reported in Table 5.

Table 4
Comparison of misclassification error rates for model CT1 fit to 2007–2011 non-FAD
closure data.

Training data (2007–2011) Test data (2012)

Type I Type II Overall Type I Type II Overall
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Tuna-only 25.3% 14.2% 18.4% 28.1% 17.8% 21.8%
With bycatch 11.5% 14.0% 13.1% 12.1% 16.0% 14.4%

his case, the mere presence of rainbow runner (“rru kg”, greater
han or equal to 0.5 kg in a set) was the first classification rule.
ets for which this was  true formed a terminal node with all sets
ll classified as “A”. As can be seen in the node statistics, this is a
owerful rule as there were only 428 “U” sets among the 14,570

or which this rule was true. To classify the 20,028 sets without
ainbow runner in the catch as many four classification rules were
equired to predict set association. Sets that were almost pure skip-
ack (SKJ.pct > = 99.3% of catch composition) were classified as “U”

hile less pure sets where then classified according to percent of
ellowfin, percent of bigeye and mean length of yellowfin, in the
et.

Table 4 reports the MCE  rates for the two models described
bove. We  list the MCE  rates for the training data, i.e., how well
he model performed on the data used to fit the model, and then
he error rates when the model fits are applied to the test data.
ype I and II MCE  rates for the test data are between 18 and 28%
or models based solely on tuna catch, while MCE  rates drop to
round 12–16% when bycatch is included in the models. The inclu-
ion of bycatch was especially effective in lowering Type I errors,
educing the MCE  rate by an absolute amount of 16.0%, which corre-
ponds to a 57% reduction in relative terms. Type II errors, however,
ncreased by 1.8% (in absolute terms), which corresponds to an 11%

ncrease in relative terms. The overall MCE  rate decreased to 14.4%
rom 21.8%, a relative improvement of 34%. The tuna-only model
as higher Type I and Type II errors; the with-bycatch model was
pposite. The relative mix  of error types is determined by the data
oped from observer-sampling data for the period 2,007,011. Misclassification error

and which set type can be more readily predicted by the variables;
the model seeks to minimize the overall MCE. We  also note that
there is no interaction between the two  sets of models. Inclusion of
bycatch can result in use or non-use of classification variables from
the tuna-only model. A visual illustration of one form of variability
in MCE  rates is illustrated in Fig. 6. Within each 1◦ longitude strip
we computed, for both the tuna-only and with-bycatch models,
the proportion of correctly classified sets (unassociated classified
as unassociated, associated classified as associated) and misclas-
sified sets (Type 1 – unassociated misclassified as associated and
Type 2 – associated misclassified as unassociated). Several features
of the analysis are observed in the figure. The tuna-only model
is characterized by high Type 1 (solid red line) MCE  rates in the
west and very low Type I MCE  rates east of 155◦E. Type II errors for
the tuna-only model (solid yellow line) are much more consistent
across the fishing range. There are multiple possible explanations
for this result: for example, anchored FADs (as opposed to drift-
ing FADs) are more commonly fished in this region and tuna stock
assessments treat this region separately due to differing size com-
positions, thus the mix  and size of tunas may contrast with the more
generally derived classification rules. Differences in bycatch might
assist in better defining FAD-association. The with-bycatch model
greatly reduces the level of Type I errors (dashed red line) with little
consistent effect on Type II errors. Even with the addition of bycatch
as a predictor, there remains some spatial structure, in the latitudi-
nal distribution of Type I MCE  rates, which suggests that inclusion
of a spatial variable may  further lower the MCE  rate. Besides the
spatial structure, set type misclassification patterns might exist
temporally, nationally, by EEZ, etc.

3.2. Classification tree model (CT2) with auxiliary predictors
A second set of CT models, which include the auxiliary variables,
was fitted to the same training and test datasets and the results are
illustrated in Fig. 7. MCE  rates, for all five sets of models, for both
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Fig. 6. Longitudinal distribution (summed within 1◦ longitude strips) of 2012 purse seine sets and classification results from CT1 models. Top panel illustrates total sets.
Middle  panel illustrates proportions of correct (UU and AA) and incorrect (UA + AU) classifications for the tuna-only model. The first letter is the observer recorded set type
(U  indicates unassociated, A indicates associated) and the second letter is the set type predicted by our model. The bottom plot shows the misclassification error (MCE) rates
for  Type I (UA) and Type II (AU) errors for the tuna-only (solid line) and with-bycatch (dashed line) models. The two solid lines sum to the height of the incorrect (UA  + AU,
in  red) bars in the middle panel. See text for definition of MCE  rate calculations.
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Fig. 7. Classification rules and node statistics for the two  classification tree models developed from observer-sampling and auxiliary data for the period 2007–2011.
Misclassification error rates are reported in Table 5.
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Table  5
Comparison of misclassification error (MCE) rates among the five models.

Tuna-only models

Training data (2007–2011) Test data (2012)
Type I Type II Overall Type I Type II Overall

CT1 25.3% 14.2% 18.4% 28.1% 17.8% 21.8%
CT2  19.3% 13.8% 15.9% 25.4% 14.4% 18.7%
BP  17.1% 9.7% 12.5% 38.3% 8.4% 20.1%
RF1  16.3% 9.6% 12.1% 48.4% 9.5% 24.8%
RF2  12.4% 12.3% 12.3% 41.2% 13.0% 24.0%

With-bycatch models
Training data (2007–2011) Test data (2012)

Type I Type II Overall Type I Type II Overall

CT1 11.5% 14.0% 13.1% 12.1% 16.0% 14.4%
CT2  11.9% 12.2% 12.1% 12.9% 14.7% 14.0%
BP  11.9% 8.3% 9.7% 28.6% 8.1% 16.1%
RF1  10.4% 8.0% 8.9% 35.9% 8.8% 19.4%
RF2  8.9% 8.8% 8.9% 31.4% 10.1% 18.4%

Note: abbreviations are: CT1– classification tree with observer sampling data; CT2
–  classification tree with sampling and auxiliary data; BP – bagging predictors with
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Table 6
Comparison of model CT2 misclassification error rates (MCE) of purse seine sets
during the FAD closure periods.

Tuna-only With bycatch

Type I Type II Overall Type I Type II Overall

2009 34.3% 9.3% 25.7% 13.9% 11.5% 13.1%
2010  14.0% 35.0% 16.0% 7.1% 40.7% 10.3%
2011 19.2% 21.5% 19.9% 11.8% 23.1% 14.9%
ampling and auxiliary data; RF1 – random forests with sampling and auxiliary
ata, unequal error rates; RF2 – random forests with sampling and auxiliary data,
alanced error rates.

he training data and test data model fits are listed in Table 5. For
he tuna-only data, there was an improvement of CT2 model fits
ver CT1 model fits, measured by overall MCE  rate, for both the
raining and test data; overall MCE  was lowered to 15.9% (from
8.4%) for the training data and from 21.8 to 18.7% for the test data.

n both cases, both the Type I and Type II errors decreased. While
he overall MCE  rates for the with-bycatch model decreased for
oth the training (13.1–12.1%) and test data (14.4–14.0%), this was
ccomplished by lowering Type II errors, at the expense of slightly
ncreasing Type I errors. The overall reduction in MCE  was  accom-
anied by the addition of longitude variables for both models and
n increase in complexity for the tuna-only model. For the tuna-
nly model, the two rules from CT1 were retained, but a split on
kipjack length (at 54.9 cm)  joined the split on skipjack percentage
at 2.05). The skipjack length split was added to accommodate the
ubsequent longitude split (at 165◦); it is only with the longitude
ata that the model finds support for the skipjack length split. Sim-

lar new branches for both models were built as a result of adding
he auxiliary variables. Ultimately, the CT2 models performed the
est among the five model types at classifying the test data.

.3. Bagging predictors (BP)

Both BP models (tuna-only and with-bycatch) were fitted using
he observer-sampling and auxiliary data predictors. The models
howed a marked improvement in fitting the training data, relative
o the CT1 and CT2 models, but did a poorer job than the CT2 models
f predicting the test data (Table 5). The BP models produced near
alanced Type I/Type II MCE  rates for the training data but much
ore unbalanced MCE  rates for the test data. Because the BP models

enerate bootstrapped datasets every time when run, there is a
mall amount of variance in both the training and test data MCE
ates. This variance, while slightly larger for the test data MCE  rates,
as in all cases less than 0.1%. For the bootstrapped models, variable

mportance is illustrated using a rescaling of the Gini index (Fig. 8).
his figure allows a visual and quantitative comparison of variable

mportance both across model types (simple classification models
T1/CT2 and bootstrapped models BP/RF1/RF2) as well as the tuna-

nly and with-bycatch variants. The most important variables in
he BP models are generally the same as those seen in the two CT

odels, namely SKJ.pct, YFT.pct, YFT.len, and BET.pct and, in the
ase of the with-bycatch model, the presence of rainbow runner
2012 42.6% 16.8% 35.7% 15.9% 19.6% 16.9%
All  years 25.9% 19.2% 24.4% 11.6% 21.8% 13.9%

(rru kg). Longitude is the most important auxiliary variable for both
models as well.

3.4. Random forest models, RF1 (minimum error rates) and RF2
(equal error rates)

The two  RF models were fitted using the same data as the BP
and CT2 models with the exception that the three average length
variables were not included. Despite this exclusion, the RF1 models
provided the best fit, in terms of overall MCE  rate, to the training
data, with rates of 12.1% and 8.9% for the tuna-only and with-
bycatch models, respectively. The RF2 model, with case weights
adjusted to give equal Type I and Type II error rates, performed
only slightly worse than the RF1 model, in terms of training data
MCE  rates. However, when applied to the test data, the two sets
of RF models performed more poorly than the three other model
types, in that they had the highest overall MCE rates. In terms of
predicting the test data, the best performing model was the with-
bycatch RF2 model with an overall MCE  rate of 18.4%; the worst
performing model was the tuna-only RF1 model with an overall
MCE  rate of 24.8%. The Type I and Type II MCE  rates for the test data
sets were extremely unbalanced despite being nearly balanced (in
the RF1 models) and evenly balanced (in the RF2 models). Perhaps
as a result of not having access to mean length data, the ranking of
important variables for the RF models was  quite different than for
the CT and BP models (Fig. 8).

3.5. Prediction of FAD closure sets

The model fits discussed above were restricted to purse seine
sets made outside the FAD closure period, first instituted in 2009.
On the basis of the results presented above, we have selected model
CT2 as our preferred model for classifying purse seine sets in our
dataset. We  next apply this model to the FAD-closure dataset to
determine if the model predicts these data as accurately, less accu-
rately, or differently than it classifies the non-FAD closure data. We
apply the model, using both the tuna-only and the with-bycatch
variants, to each year of the FAD-closure data as well as to the four
years (2009–12) collectively. In general, the results (Table 6) do not
indicate a substantially higher MCE  rate for the FAD-closure data.
The overall MCE  for the tuna-only model is 33% higher than for
the non-FAD closure data, but there is high interannual variability;
the with-bycatch MCE  rate – for the four years combined – is actu-
ally slightly lower than for the non-FAD closure data. Interannual
variability in MCE  rates is considerably lower for the with-bycatch
model.

4. Discussion

The original goal of this analysis was to determine what level of

correct purse seine set association could be achieved with access to
sampling of individual sets. Our results suggest that, given access to
observer type sampling of sets, simple classification models, based
only on tuna catch, could provide up to 78% accurate classification.
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ig. 8. Ranking of importance of classification variables, measured as sum of all dec
odels  are plotted in the upper panels, the three bootstrapping models (BP, RF1, RF

f bycatch data were available, up to 85% accurate classification
ight be possible. Additional auxiliary variables to the CT mod-

ls marginally reduced MCE  rates for the tuna-Only from 21.8 to
8.7%, while with-bycatch model MCE  rates decreased from 14.4
o 14.0%. The use of bagging predictors produced lower MCE  rates
or the training data, but performed about as well as the CT1 model,
nd worse than the CT2 model, on classifying the test data. The two
F models, which did not utilize the mean length predictors, per-

ormed very well on the training datasets; when applied to the test
ata however, the predictions were poorer than the CT and BP mod-
ls. On the basis of these results we conclude that, for the types
f data tested, the use of auxiliary predictors provides marginal

mprovement and resampling techniques provide no improvement
ver the simpler (to fit and interpret) CT models based solely on
bserver sampling data.
Inclusion of bycatch, specifically rainbow runner, as a predic-
or variable greatly improves model classification of set type. This
s true not only for training data sets, but also for the test data
ets. The classification rule for rainbow runner is literally pres-
 in Gini impurity, for each of the five sets of models. The two classification tree (CT)
 plotted in the lower panels.

ence/absence. As the smallest possible recorded amount of rainbow
runner bycatch for any set in the database is 1.0 kg (data are recoded
as metric tons to three decimal places), and the classification rule
for rainbow runner is always set at 0.5 kg, the models are using
presence of rainbow runner as the strongest indicator of FAD-
association. Once a set has been classified as associated on the basis
of rainbow runner presence, no models include additional steps to
further separate those sets indicating none of the other variables
contain predictive power. While other bycatch species show simi-
lar levels of discrepancy in mean catch per set type, rainbow runner
appears more than twice as frequently in sets as the second most
common bycatch species (dolphin fish) and several times more fre-
quently than any of the others. Within unassociated sets, two  other
bycatch species – blue marlin and black marlin – occurred more
frequently than rainbow runner.
Another advantage that derives from the use of bycatch in the
classification models is the sharp reduction in Type I errors, i.e., mis-
classification of unassociated sets as associated. One type of set that
is typically misclassified in the tuna-only models is a free school set
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ontaining a large fraction of small yellowfin or bigeye tuna. The
ack of bycatch (specifically rainbow runner) in such sets prevents
hese sets from being classified as associated.

With the exception of the bootstrapping model RF2, our mod-
ls seek to minimize overall MCE  rate on the training data set. A
otential criticism of this approach is that the cost of misclassi-
cation errors is unequal depending on one’s perspective. From

 conservation, or sustainable seafood purchasing, perspective it
s undesirable to have high Type II errors: the situation when a
AD-associated set is misclassified (accepted) as being unassoci-
ted. Similarly, from a fisher’s perspective, a Type I error: when

 FAD-free set is misclassified as being FAD-associated, is highly
ndesirable.In this analysis, we do not consider the societal or con-
ervation costs of one error type over the other, opting only to
etermine how well we  can predict set association at different lev-
ls of data quantity and model complexity. As noted, we did attempt
o equalize the two error types (model RF2) as this is an option for
andom forest models. As was the case with the BP and RF1 models,
he classification of the training data was quite good – substantially
uperior to the two CT models. However, when the RF2 model was
pplied to the test data, it performed substantially worse than the
T models. In fact, all three bootstrap models had much more unbal-
nced error type ratios than the CT models, both for the Tuna-only
nd With-bycatch datasets. This may  occur from model overfit-
ing and/or the non-availability of the mean length data to the RF

odels. Constructing a forest of models, all based on various sub-
ets of the data and predictor variables increases the “importance”
f several variables that have no predictive value for the two CT
odels (see Fig. 8). The CT models maintained relatively balanced

rror rate types for both the training and test data sets.Given its
inimum data requirement, Tuna-only CT1 model (i.e., without

uxiliary data) which included bycatch was very nearly the best
verall model, with both error types within 2% (in absolute terms)
f the overall MCE. The addition of auxiliary variables (i.e., model
T2), did lower overall MCE, and slightly lower the discrepancy in
rror types, but the improvement was minor compared to the effect
f including bycatch.

A key question is then how accurately can observers estimate
ycatch.The bycatch may  be discarded or quickly set aside for con-
umption by the crew. We  have chosen ‘edible’ bycatch species
ere as we believe that they are most easy to observe, and most

ikely to relate to school association. Without exception, all the
ycatch-free models had skipjack percentage as the first-order
lassification rule, with pure sets (SKJ.pct >99.5%) classified as unas-
ociated sets.However, none of these bycatch-free models had MCE
ates as low as the with-bycatch models for the test data sets.

Regarding the analysis of the FAD-closure dataset, some obser-
ations from the model results bear mentioning.Using the CT2
odel as our best performing and, therefore “preferred” model,

he overall MCE  rates for the years of 2009–12 combined were quite
imilar in magnitude to the MCE  rates of sets from the non-FAD clo-
ure period. In fact, the with-bycatch model MCE  rates were a bit
ower. There was interannual variability in all three error type but
t was not biased toward either Type I or Type II error. This exercise
rovides some reassurance in regards to observer classification of
urse seine set association during the period of FAD closure.

One other point bears mentioning in regards to possible
ncreased confidence in sampling purse seine catches to identify
et type. The vast majority (>99%) of all sampled sets were sam-
led using the “grab sample” method. Essentially, an observer is

nstructed to “grab” a sample of fish, striving for representative-
ess, for each set. The observer grab sample is generally 100 fish

r less: just 18% of the observed sets were sampled for more than
00 fish, less than 1.5% were sampled for more than 300 fish. Mean
rab sample size across all sets is 65 fish. Both species composi-
ion and mean length estimates are based on these samples. Thus,
rch 172 (2015) 361–372 371

catch composition – especially for the rarer yellowfin and bigeye
species – is only roughly estimated (this is likely less an issue with
estimated mean lengths) at the set level. Given the low intensity
sampling of purse seine catches, catch purity is an issue: sometimes
the presence of a single non-skipjack tuna or bycatch species, is
sufficient for sets to be classified as associated. The move toward
“spill sampling” (Lawson, 2011), where a smaller number of larger
samples are taken from a purse seine set, is one potential improve-
ment in this regard. Spill samples are ‘spilled’ into a bin rather than
hand selected and are designed to overcome fish selection bias. The
overall larger sample sizes and reduced bias may  well increase the
precision of models developed to classify set type.

Finally, while our focus was limited to consideration of catch
sampling data, there are a number of non-sampling characteristics
that might potentially improve set classification. e.g., vessel flag,
EEZ, and set time. Harley et al. (2009) demonstrated that time of day
is a possibly important distinguishing characteristic between set
types. Historically, associated sets occurred pre-dawn and unasso-
ciated sets occurred throughout the day. It is generally believed that
unassociated sets cannot occur during darkness (light is needed to
find and encircle the fish), but associated sets theoretically could
occur at any time of day. Therefore, time of day is probably best
for excluding pre-dawn unassociated sets rather than assisting in
classifying unassociated sets. We  did not explicitly consider time
of day in this analysis, but intend to further pursue this factor in
future work on this subject.

There are several operational activities that could serve to make
classification rates reported in this analysis unreliable and overly
optimistic. The most significant would be the failure to accurately
record bycatch if bycatch-included models were applied. “Clean”
skipjack sets are, almost without exception, classified as unassoci-
ated sets.Sets that are not “pure” skipjack but which have very high
levels of either yellowfin or bigeye (in essence, a different form of
a “clean” set) are also typically classified as unassociated. Accu-
rate observer recording of observed bycatch is a high priority duty
of observers; the concern here is intentional hiding of bycatch by
vessel personnel. Further, interference with sampling protocol to
bias sampling toward particular species of tuna is another means of
influencing determination of set type. A second-order possibility,
if classification rules were “known”, would be to manipulate mean
size, particularly of yellowfin tuna: large yellowfin almost always
come from unassociated sets while small yellowfin can come from
either set type. Finally, we  note that observers might be unaware of
a purse seine set on an incidental (piece of rope, plastic bag) or natu-
ral (whale shark) FAD, thus misclassifying such sets as unassociated.
The effect of this form of misclassification results in an increased
Type I (as well as overall) error rate.In this regard, our error rates
would be reduced if such misclassifications were corrected.

Acknowledgments

We wish to thank Bruce Leaman, Carola Kirchner, Peter
Williams, Paul Judd, Alex Tidd and two anonymous referees for
early manuscript reviews. We also thank A. Fonteneau for mak-
ing the R code with which Fig. 2 was produced freely available
online and Laura Tremblay-Boyer for general graphics assistance.
Finally, we acknowledge the partnership of the European Union’s
10th European Development Fund in supporting this work, in large
measure via funding for the SciCoFish project.

References
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and
Regression Trees. Wadsworth and Brooks/Cole, Monterey.

Breiman, L., 1996. Bagging predictors. Mach. Learn. 24, 123–140.
Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32.

http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0005
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0005
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0005
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0005
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0005
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0005
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0005
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0005
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0010
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0010
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0010
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0010
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0010
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0010
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0010
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0010
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0015
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0015
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0015
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0015
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0015
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0015
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0015
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0015
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0015


3  Resea

C

D

F

F

H

H

L

L

L

72 S.R. Hare et al. / Fisheries

utler, D.R., Edwards Jr., T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J.,
2007. Random forests for classification in ecology. Ecology 88 (11), 2783–2792.

agorn, L., Holland, K.N., Restrepo, V., Moreno, G., 2012. Is it good or bad to fish
with FADs? What are the real impacts of the use of drifting FADs on pelagic
marine ecosystems? Fish Fish. 14 (3), 391–415.

onteneau, A., Chassot, E., Ortega-Garcia, S., Delgado de Molina, A., Bez, N., 2010.
On the use of the De Finetti ternary diagrams to show the species composition
of  free and FAD associated tuna schools in the Atlantic and Indian oceans, in:
tropical tunas. Coll. Vol. Sci. Pap., 546–555.

onteneau, A., Chassot, E., Bodin, N., 2013. Global spatio-temporal patterns in
tropical tuna purse seine fisheries on drifting fish aggregating devices (DFADs):
taking a historical perspective to inform current challenges. Aquat. Living
Resour. 26, 37–48, http://dx.doi.org/10.1051/alr/2013046

arley, S., Williams, P., Hampton, J., 2009. Analysis of purse seine set times for
different school associations: a further tool to assist in compliance with FAD
closures? WCPFC-SC5-2009/ST- WP-07 (available at http://www.wcpfc.int/
node/2126).

arley, S., Williams, P., Nicol, S., and Hampton, J., 2014. The western and central
pacific tuna fishery: 2012 overview and status of stocks. Tuna fisheries
Assessment Report No. 13, Secretariat of the Pacific Community, Oceanic
Fisheries Programme. 31 pp. Available at http://www.spc.int/OceanFish/en/
publications/doc download/1205-tuna-fisheries-assessment-report-no-13).

ennert-Cody, C.E., Rusin, J.D., Maunder, M.N., Everett, E.H., Largacha Delgado, E.D.,
Tomlinson, P.K., 2013. Studying small purse-seine vessel fishing behavior with
tuna catch data: implications for eastern Pacific Ocean dolphin conservation.
Mar. Mamm.  Sci. 29, 643–668.

awson, T., 2011. Purse-seine length frequencies corrected for selectivity bias in
grab  samples collected by observers. WCPFC-SC7-2011/ST-IP-02. Available at

http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-
02pdf

iaw, A., Wiener, M.,  2002. Classification and regression by randomForest. R news,
The newsletter of the R project, Vol. 2/3: 18–22. Available at: http://cran.r-
project.org/doc/Rnews/Rnews 2002-3pdf
rch 172 (2015) 361–372

Liaw, A., Wiener, M., 2015. randomForest: Breiman and Cutler’s random forests for
classification and regression. R package version 4. 6–10. http://cran.r-project.
org/web/packages/randomForest/index.html

Nicodemus, K.K., 2011. Letter to the editor: on the stability and ranking of
predictors from random forest variable importance measures. Brief Bioinform.
12  (July (4)), 369–373.

Pallarés, P., Nordstrom, V., Fonteneau, A., Delgado de Molina, A., Ariz, J., 2003.
Definition of criteria to identify FAD and free school sets based on the species
composition and average weight of the samples from the Indian Ocean
European fleet of purse seiners. IOTC Proc. 6, 256–263.

Peters, A., Hothorn, T., Ripley, B.D., Therneau, T., Atkinson, B., 2015. ipred:
improved Predictors. R package version 0. 9–4. http://cran.r-project.org/web/
packages/ipred/index.html

Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., Wang, W.,  2002. An
improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625.

R Core Team, 2013. R: a language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-
project.org/

Therneau, T., Atkinson, B., Ripley, B. (2013). rpart: Recursive Partitioning. R
package version 4. 1–3. http://CRAN.R-project.org/package=rpart

WCPFC, 2009. Conservation and Management Measures for Bigeye and Yellowfin
Tuna in the Western and Central Pacific Ocean. CMM  2008-01. Available at
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-
measure-bigeye-and-yellowfin-tuna-western-and-central

WCPFC., 2013. Conservation and Management Measures for Bigeye, Yellowfin and
Skipjack.CMM 2012-01. Available at http://www.wcpfc.int/doc/cmm-2012-01/
conservation-and-management-measure-bigeye-yellowfin-and-skipjack

Williams, P., 2014. Scientific data available to the Western and Pacific Fisheries

Commission.WCPFC-SC10—2014/ST WP-1. Available at: http://www.wcpfc.
int/node/18878

Yi, Q., 2012. Random forest for Bioinformatics. Ensemble Machine Learning:
Methods and Applications. Springer-Verlag, New York, pp. 307–323 http://dx.
doi.org/10.1007/978-1-4419-9326-7

http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0020
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0020
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0020
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0020
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0020
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0020
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0020
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0020
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0020
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0020
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0020
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0020
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0025
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0030
dx.doi.org/10.1051/alr/2013046
dx.doi.org/10.1051/alr/2013046
dx.doi.org/10.1051/alr/2013046
dx.doi.org/10.1051/alr/2013046
dx.doi.org/10.1051/alr/2013046
dx.doi.org/10.1051/alr/2013046
dx.doi.org/10.1051/alr/2013046
dx.doi.org/10.1051/alr/2013046
http://www.wcpfc.int/node/2126
http://www.wcpfc.int/node/2126
http://www.wcpfc.int/node/2126
http://www.wcpfc.int/node/2126
http://www.wcpfc.int/node/2126
http://www.wcpfc.int/node/2126
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://www.spc.int/OceanFish/en/publications/doc_download/1205-tuna-fisheries-assessment-report-no-13
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0050
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC7/ST-IP-02pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3pdf
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0070
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0075
http://cran.r-project.org/web/packages/ipred/index.html
http://cran.r-project.org/web/packages/ipred/index.html
http://cran.r-project.org/web/packages/ipred/index.html
http://cran.r-project.org/web/packages/ipred/index.html
http://cran.r-project.org/web/packages/ipred/index.html
http://cran.r-project.org/web/packages/ipred/index.html
http://cran.r-project.org/web/packages/ipred/index.html
http://cran.r-project.org/web/packages/ipred/index.html
http://cran.r-project.org/web/packages/ipred/index.html
http://cran.r-project.org/web/packages/ipred/index.html
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://refhub.elsevier.com/S0165-7836(15)30051-5/sbref0085
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=rpart
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2008-01/conservation-and-management-measure-bigeye-and-yellowfin-tuna-western-and-central
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/doc/cmm-2012-01/conservation-and-management-measure-bigeye-yellowfin-and-skipjack
http://www.wcpfc.int/node/18878
http://www.wcpfc.int/node/18878
http://www.wcpfc.int/node/18878
http://www.wcpfc.int/node/18878
http://www.wcpfc.int/node/18878
http://www.wcpfc.int/node/18878
http://dx.doi.org/10.1007/978-1-4419-9326-7
http://dx.doi.org/10.1007/978-1-4419-9326-7
http://dx.doi.org/10.1007/978-1-4419-9326-7
http://dx.doi.org/10.1007/978-1-4419-9326-7
http://dx.doi.org/10.1007/978-1-4419-9326-7
http://dx.doi.org/10.1007/978-1-4419-9326-7
http://dx.doi.org/10.1007/978-1-4419-9326-7
http://dx.doi.org/10.1007/978-1-4419-9326-7
http://dx.doi.org/10.1007/978-1-4419-9326-7
http://dx.doi.org/10.1007/978-1-4419-9326-7
http://dx.doi.org/10.1007/978-1-4419-9326-7

	Verifying FAD-association in purse seine catches on the basis of catch sampling
	1 Introduction
	2 Materials and methods
	2.1 Tuna species composition
	2.2 Tuna length composition
	2.3 Bycatch composition
	2.4 Non-sampling variables

	3 Results
	3.1 Classification tree model (CT1) using just observer-sampling data
	3.2 Classification tree model (CT2) with auxiliary predictors
	3.3 Bagging predictors (BP)
	3.4 Random forest models, RF1 (minimum error rates) and RF2 (equal error rates)
	3.5 Prediction of FAD closure sets

	4 Discussion
	Acknowledgments
	References


