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EXECUTIVE SUMMARY 

This paper presents the 2014 assessment of bigeye tuna in the western and central 
Pacific Ocean. This assessment is supported by several other analyses which are documented 
separately, but should be considered when reading this assessment as they underpin many of 
the fundamental inputs to the models. The updated assessment addresses many of the 
recommendations provided in the report of the “Independent Review of the 2011 bigeye tuna 
stock assessment” (Ianelli et al., 2012). Other key papers document: the methods used in 
producing the purse seine size data (Abascal et al. 2014) and catch estimates (Lawson 2013), 
longline size data (McKechnie 2014), longline CPUE data (McKechnie et al., 2014b), and tagging 
data (Berger et al. 2014); revisions to the fisheries and spatial definitions (McKechnie et al. 
2014a); and the guidance of the Pre-Assessment Workshop (PAW) held in April, 2014 (SPC-OFP 
2014). 

Some of the main improvements in the 2014 assessment are:  

• Increases in the number of spatial regions to better model the tagging and size data; 

• Inclusion of catch estimates from Vietnam and some Japanese coastal longline data 
previously not included; 

• The use of operational longline data for multiple fleets to better address the contraction of 
the Japanese fleet and general changes over time in targeting practices; 

• Improved modelling of recruitment to ensure that uncertain estimates do not influence 
key stock status outcomes; and 

• A large amount of new tagging data corrected for differential post-release mortality and 
other tag losses. 

The large number of changes since the 2011 assessment (some of which are described 
above), and the nature of some of those changes, means that full consideration of the impacts of 
individual changes is not possible. Nevertheless, the report details some of the key steps from 
the 2011 reference case (Run3j – Ref.case) to the 2014 reference case (037_L0W0T0M0H0). 
Distinguishing features of the 2014 reference case model include: 

• The steepness parameter of the stock recruitment relationship is fixed at 0.8. 

• The mean length of the oldest age class in the model is fixed at 184 cm. 

• Natural mortality at age is fixed according to an external analysis in which it is assumed 
that the natural mortality rate of females increases with the onset of reproductive 
maturity. 

• The likelihood function weighting of the size data is determined using an effective sample 
size for each fishing observation of one-twentieth of the actual sample size, with a 
maximum effective sample size of 50. 

• For modelling the tagging data, a mixing period of 2 quarters (including the quarter of 
release) is applied. 

• The last six quarterly recruitments aggregated over regions are assumed to lie on the 
stock-recruitment curve. 

The rationale for these choices, which comprise the key areas of uncertainty for the 
assessment, is described in detail in the report. We report the results of “one-off” sensitivity 
models to explore the impact of these choices for the reference case model on the stock 
assessment results. A sub-set of key, plausible model runs was taken from these sensitivities to 
include in a structural uncertainty analysis (grid) for consideration in developing management 
advice. 

The main conclusions of the current assessment are consistent with recent assessments 
presented in 2010 and 2011. The main conclusions based on the results from the reference case 
model and with consideration of results from performed sensitivity model runs, are as follows. 
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1. The new regional structure, and modelling and data improvements appear to have 
improved the current assessment with the previously observed increasing trend in 
recruitment much reduced and the fit to Coral Sea tagging data greatly improved.  

2. Nevertheless there is some confounding between estimated growth, regional recruitment 
distributions and movement which, while having minimal impact on stock status 
conclusions, lead to a complex solution surface and the presence of local minima.  

3. Current catches exceed maximum sustainable yield (MSY); 

4. Recent levels of fishing mortality exceed the level that will support the MSY; 

5. Recent levels of spawning potential are most likely at (based on 2008-11 average) or 
below (based on 2012) the level which will support the MSY; 

6. Recent levels of spawning potential are most likely at (based on 2008-11 average) or 
below (based on 2012) the limit reference point of 20%SBF=0 agreed by WCPFC; 

7. Recent levels of spawning potential are lower than candidate biomass-related target 
reference points currently under consideration for skipjack tuna, i.e., 40-60% SBF=0; and 

8. Stock status conclusions were most sensitive to alternative assumptions regarding the 
modelling of tagging data and the longline CPUE series included, identifying these as 
important areas for continued research. However, the main conclusions of the assessment 
are robust to the range of uncertainty that was explored. 

The report also includes recommendations for future stock assessments of bigeye tuna, 
including research activities to improve model inputs. 
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1 INTRODUCTION 

This paper presents the 2014 stock assessment of bigeye tuna (Thunnus obesus) in the 

western and central Pacific Ocean (WCPO, west of 150°W). Since 1999, the assessment has been 
conducted regularly and the most recent assessments are documented in Hampton et al. (2004, 
2005 and 2006), Langley et al. (2008), Harley et al. (2009), Harley et al. (2010 b), and Davies et 
al. (2011). Further the 2011 assessment was the focus of a detailed independent review (Ianelli 
et al., 2012) and many of the improvements from the 2011 assessment reflect recommendations 
from this review. 

This assessment is supported by several other analyses which are documented 
separately, but should be considered an integral part of this assessment. These include: 
improved purse seine catch estimates (Lawson 2013), reviews of the catch statistics of the 
component fisheries (Williams 2014; Williams & Terawasi 2014), standardised CPUE analyses 
of operational level catch and effort data (McKechnie et al. 2014b), size data inputs from the 
purse seine (Abascal et al., 2014) and longline fisheries (McKechnie 2014), revised regional 
structures and fisheries definitions (McKechnie et al., 2014a), preparation of tagging data and 
reporting rate information (Berger et al., 2014). Finally, many of these issues were discussed in 
detail at Pre-Assessment Workshop (PAW) held in Noumea in April, 2014 (SPC-OFP 2014).  

2 BACKGROUND 

2.1 Stock structure 

Bigeye tuna are distributed throughout the tropical and sub-tropical waters of the 
Pacific Ocean. Analysis of mtDNA and DNA microsatellites in nearly 800 bigeye tuna failed to 
reveal significant evidence of widespread population subdivision in the Pacific Ocean (Grewe 
and Hampton 1998). While these results are not conclusive regarding the rate of mixing of 
bigeye tuna throughout the Pacific, they are broadly consistent with the results of SPC’s and 
IATTC’s tagging experiments on bigeye tuna. Before 2008, most bigeye tuna tagging in the 
Pacific occurred in the far eastern Pacific (east of about 120°W) and in the western Pacific (west 
of about 180°). While some of these tagged bigeye were recaptured at distances from release  of 
up to 4,000 nautical miles over periods of one to several years, the large majority of tag returns 
were recaptured much closer to their release points (Schaefer and Fuller 2002; Hampton and 
Williams 2005). Since 2008, bigeye tuna tagging by the Pacific Tuna Tagging Programme has 
been focussed in the equatorial central Pacific, between 180° and 140°W. Returns of both 
conventional and electronic tags from this programme have been suggestive of more extensive 
longitudinal, particularly west to east, displacements (Schaefer et al. submitted). It is 
hypothesised that while bigeye tuna in the far eastern and western Pacific may have relatively 
little exchange, those in the central part of the Pacific between about 180° and 120°W may mix 
more rapidly over distances of 1,000 – 3,000 nautical miles.  In any event, it is clear that there is 
extensive movement of bigeye across the nominal WCPO/EPO boundary of 150°W (Figure 2). 
While stock assessments of bigeye tuna are routinely undertaken for the WCPO and EPO 
separately1, these new data suggest that examination of bigeye tuna exploitation and stock 
status on a Pacific-wide scale, using an appropriately spatially-structured model, should be a 
high priority. 

2.2 Life history characteristics 

Bigeye tuna are relatively fast growing, and have a maximum fork length (FL) of about 
200 cm. The growth of juveniles appears to depart somewhat from von Bertalanffy type growth 
with the growth rate slowing between about 40 and 70 cm FL (Lehodey et al. 1999), although 

                                                             

1 The results of the most recent (2006) Pacific-wide model are compared with WCPO and EPO 
assessments conducted in the same year in Hampton and Maunder (2006). 
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this effect is not as marked as for yellowfin tuna. Recent integrated analyses of tag recapture 
and age-at-length data for EPO bigeye (Aires-da-Silva et al. 2014) have estimated lengths (cm) 
at age (yr) of 1: 55, 2: 91, 3: 123, 4: 147, 5: 165, 6: 177, 7: 185, 8: 191, 9: 194, 10: 196. These 
mean lengths-at-age are larger than those estimated internally in bigeye WCPO stock 
assessments, based on fitting to size frequency data. For example, the WCPO estimates are about 
12 cm smaller at age 2 and 20 cm smaller at age 5. Differences in growth at the level of the 2011 
model regions have also been detected in the WCPO (Nicol et al. 2011), but it is unknown at this 
stage how this might impact on stock assessment results. New information on this topic and on 
bigeye tuna growth generally is being collected under WCPFC-SC Project 35, and is expected to 
be incorporated into future bigeye tuna assessments.  

Available data for the WCPO indicate that bigeye tuna begin to be reproductively active 
from about 100 cm FL, and that 100% of individuals >120 cm FL are reproductively mature. 
Regional variation in maturity-at-length is suspected to occur, and bigeye tuna appear to be 
reaching maturity at larger sizes in the EPO (Schaefer et al. 2005). As with other tunas, the sex 
ratio of bigeye tuna changes at around the age/size of reproductive maturity to favour males at 
larger size. This information is used to define spawning potential based on mature female 
biomass in stock assessments. Project 35 is collecting reproductive samples from bigeye tuna 
throughout the WCPO and following analysis this information will be used to revise maturity 
schedules and will be incorporated into future bigeye assessments. 

The natural mortality rate of bigeye tuna is likely to vary with size, with the lower rates 
of around 0.5 yr-1 for bigeye >40 cm FL (Hampton 2000). Tag recapture data indicate that 
significant numbers of bigeye reach at least eight years of age (Hampton and Williams 2005). 
The longest period at liberty for a recaptured bigeye tuna tagged in the western Pacific at about 

1−2 years of age is currently 14 years (SPC unpublished data). Natural mortality of female 
bigeye is hypothesised to increase at around the age of reproductive maturity, due to the 
physiological stresses of spawning, resulting in male-biased sex ratios at larger size. This feature 
of the population dynamics has been incorporated into the fixed natural-mortality-at-age 
schedules used in recent, and the current, reference-case bigeye tuna assessments. However, the 
current assessment also includes estimation of natural mortality-at-age in a sensitivity analysis. 

2.3 Fisheries 

Bigeye tuna are an important component of tuna fisheries throughout the Pacific Ocean 
and are taken by both surface gears, mostly as juveniles, and longline gear, as valuable adult 
fish. They are a principal target species of both the large, distant-water longline fleets of Japan, 
Korea, China and Chinese Taipei and the smaller, fresh sashimi longline fleets based in several 
Pacific Island countries and Hawaii. Prices paid for both frozen and fresh product on the 
Japanese sashimi market are the highest of all the tropical tunas. Bigeye tuna are the 
cornerstone of the tropical longline fishery in the WCPO; the longline catch in the WCP-CA had a 
landed value in 2013 of approximately US$600 million, the lowest for the past six years 
(Williams and Terawasi 2014). 

Bigeye in purse catches are taken almost exclusively from sets on natural and artificial 
floating objects (FADs). Estimation of the bigeye (and to a lesser extent yellowfin) tuna catch 
from associated sets has been the focus of considerable research over several years. Section 
3.4.1 and references within provide details of this work. 

A small purse seine fishery also operates in the coastal waters off Japan with an annual 
bigeye catch of approximately 1,000 mt. A similar level of bigeye catch is taken by the coastal 
Japanese pole-and-line fishery. In recent years, collaborative work between SPC, WCPFC, CSIRO 
(primarily in Indonesia), and fisheries agencies in Indonesia, Philippines, and Vietnam has 
yielded improved catch statistics for these fleets. In some instances data are available at the 
individual fisheries level (e.g., longline or large-fish handline), but often statistics are aggregated 
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across a variety of gears that typically catch small bigeye tuna, e.g., ring-net, surface handline, 
and troll. 

3 DATA COMPILATION 

The data used in the assessment consist of catch, effort, length-frequency and weight-
frequency data for the fisheries defined in the analysis, and tag release-recapture data. There 
have been significant improvement to these data inputs since the 2011 assessments based on 
implementation of recommendations from the independent review (Ianelli et al., 2012) and the 
2014 PAW (SPC-OFP, 2014). These analyses are the subject of detailed working and information 
papers. We will not repeat the full details of these analyses here, rather we will provide a brief 
overview of the key features and direct interested readers to the relevant papers which are 
referenced throughout this section. 

3.1 Spatial stratification 

The spatial stratification for the assessment was modified for the current assessment 
(Figure 1), in particular the western equatorial region. The western boundary for this region 

was moved to 110°E to include additional catch from several fleets. This new area was then 
divided into three regions, the far western region was created to compartmentalise the impact 
of uncertainty in the catch time series from Indonesia, Philippines, and Vietnam (region 7 for 
bigeye and yellowfin and region 4 for skipjack). For bigeye tuna this also allowed for separation 
of the offshore fleets in this area which catch significantly larger fish. A new region was added 
covering the area best described as the Bismarck and Solomon Seas (region 8 for bigeye and 
yellowfin and region 5 for skipjack). Considerable tagging has occurred here and analyses of 
skipjack tuna showed slower mixing compared to the wider western equatorial region. Finally, a 
new region was added covering the specific region of the Coral Sea in south-western region of 
the bigeye and yellowfin models where specific tagging of bigeye and yellowfin tuna occurred 
(region 9 for bigeye and yellowfin). 

It should be recognized that the eastern boundary for the assessment regions was 
150°W and as such excludes the WCPFC Convention area component that overlaps with the 
IATTC area. These overlap area catches are included in IATTC stock assessments. For bigeye 
tuna these are primarily longline catches. 

3.2 Temporal stratification 

The primary time period covered by the assessment is 1952−2012, thus including all 
significant post-war tuna fishing in the WCPO. Within this period, data were compiled into 

quarters (January−March, April−June, July−September, October−December). As agreed at SC9, 
the assessment did not include data from the most recent calendar year. This is because these 
data are only finalised very late and are often subject to significant revision post-SC. This year 
the 2013 data were not finalized until the end of the first week of July – far too late to be 
included in assessments due only two weeks later. In the discussion section we consider 
potential mechanisms to address this matter. 

3.3 Definition of fisheries 

MULTIFAN-CL requires the definition of “fisheries” that consist of relatively 
homogeneous fishing units. Ideally, the fisheries so defined will have selectivity and catchability 
characteristics that do not vary greatly over time (although in the case of catchability, some 
allowance can be made for time-series variation). The creation of new regions in the current 
assessment required the definition of new fisheries and these were discussed in detail during 
the PAW. An important consideration in whether multiple fisheries were included in a region 
was the availability of CPUE and size data (discussed below). The 33 fisheries defined for the 
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bigeye and yellowfin assessments are provided in Table 1. A graphical summary of the 
availability of data for each fishery is provided in Figure 3. 

A change from the 2011 assessment is the removal of the Hawaiian handline fishery 
which, while having very low catches, was associated with informative weight frequency data. 
These data have not been updated for several years and therefore were no longer informing the 
model with respect to recent recruitment. A major change was the addition of a new offshore 
fishery in region 7responding to a previous analysis (Harley et al. 2010a) that found strong 
spatial patterns in the sizes of fish taken in the east and west of the original region 3. New purse 
seine and pole and line fisheries were added for regions 7 and 8. For regions 5 and 6 the 
previous L-ALL and L_PICT fisheries were combined as it was found that neither had full 
temporal coverage of size data. Region 9 also received two longline fisheries (L-AU and L-ALL), 
though the latter had very low catches and no catches in recent years. The previously defined 
Bismark Sea PNG longline fleet was amalgamated into a single longline fishery in region 8. 

A full summary of the basis for the spatial and fishery definitions is provided in 
McKechnie et al. (2014a) and there is also discussion of these matters within the PAW report 
and the independent review mentioned previously. 

3.4 Catch and effort data 

Catch and effort data were compiled according to the fisheries defined above. Catches by 
the longline fisheries were expressed in numbers of fish, and catches for all other fisheries 
expressed in weight. This is consistent with the form in which the catch data are recorded for 
these fisheries.  

Total annual catches by major gear categories for the WCPO are shown in Figure 4 and a 
regional breakdown is provided in Figure 5. The spatial distribution of catches over the past ten 
years in provided in Figure 6. Most of the catch occurs in the tropical regions (3, 4, 7, and 8).  

As noted above, only data through 2012 was used in the current assessment to 
overcome the delays and data issues that commonly occur, e.g., in the 2011 assessment data for 
the main longline fisheries was incomplete as indicated by atypical catch proportions among 
quarters in the final year. 

Within the model, effort for each fishery was normalised to an average of 1 to assist 
numerical stability. Some longline fisheries were grouped to share common catchability 
parameters in the various analyses. For such grouped fisheries, the normalisation occurred over 
the group rather than for the individual fisheries so as to preserve the relative levels of effort 
between the fisheries. For some data no effort is used - this is typically in cases where effort 
data are either considered unreliable or the fishery is composed of different ‘other’ fishing gears 
such that their effort units are not compatible. 

3.4.1 Purse seine 

Previous assessments have considered two sets of purse-seine input catch data, but the 
problems surrounding logsheet reporting of skipjack catches and grab-sample bias have been 
clearly demonstrated and only a single set of purse seine catch estimates have been included in 
the current assessment. Details of the analyses, including the independent review and response 
are provided in Lawson (2013), Cordue (2013), Powers (2013), and McArdle (2013). 

 Briefly, catch data are estimated by 1° latitude, 1° longitude, month, flag, and set-type. 
Though the exact algorithm depends on the year and data available, total catches are taken from 
the logsheet declared totals and then the grab samples are corrected for bias based on the 
estimates of the correction factors from the paired spill and grab paired sampling trials. For 
some fleets and time periods we use reported catch by species rather than estimating it, e.g., for 
Spanish purse seine vessels fishing in the east that report high proportions of bigeye tuna and 
recent Japanese purse seine estimates which are based on unloadings sorted by species. 
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 As in previous assessments, effort data units for purse seine fisheries are defined as 
days fishing and/or searching, and are allocated to set types based on the proportion of total 
sets attributed to a specified set type (associated or unassociated sets) in logbook data. Recently 
it has been discovered that some fleets have changed their reporting practices (SPC-OFP 2013) 
such that far fewer searching days are reported and these are instead reported as non-fishing 
transit days. This practice essentially represents effort creep and we have not yet specifically 
corrected recent data to ensure consistency of reporting. Therefore the impact of this is not 
known, but it will be minimized by the practice of estimating frequent time-based changes in 
catchability. 

3.4.2 Longline fisheries 

The major change to longline catch data used in the current assessment was the 
incorporation of some of the Japanese coastal fishery catches that could not previously be 
assigned to a region because they were not associated with a location (Williams 2014). 
Collaborative work between SPC and Japan confirmed that some of these catches were 
occurring in the waters of the Federated States of Micronesia and were already in the 
assessment, but some new catches were added to regions 1 and 7. Also included for the first 
time were some longline catches from Vietnam (Williams 2014). 

The longline CPUE indices for the main longline fisheries in each region are one of the 
most important inputs to the assessment as they provide information on trends in abundance 
over time for each region.  

For the current assessment, two sources of standardized CPUE series were used in 
various stages of the assessments. The first set of indices was derived from Japanese 
operational-level longline data using generalized linear models (GLM) and a delta-lognormal 
approach (Hoyle and Okamoto 2011). These were only available to 2009 for the old regions 1-6, 
and for some regions the indices for 2009 were very uncertain. In order to have time series that 
went through until 2012 it was necessary to use Japanese aggregate catch and effort data and 
then ‘splice’ these together. The procedures for this are described in McKechnie et al. (2014b).  

As these indices were not available for the new regional structure, as an intermediate 
step, the CPUE indices for old region 3 was applied to new regions 3, 7, and 8.  

The independent review of the bigeye assessment highlighted the spatial contraction of 
the Japanese fleet (and therefore the indices based on it) and accounting for targeting changes 
as the two major issues to address with longline CPUE (Ianelli et al. 2012). The new CPUE 
indices developed for the current assessment attempt to address these issues in two ways: 1) by 
using data across multiple fleets in order to minimize the spatial/temporal gaps in longline 
CPUE coverage; and 2) using operational data which allows us to consider vessel effects and 
other operational details to better account for targeting changes.  

Accounting for changing targeting practices was achieved through the use of clustering 
analysis at the level of the trip based on the composition of albacore, bigeye, and yellowfin tunas 
in the catch. See McKechnie et al. (2014b) for further details of the how the clustering was 
undertaken and the GLM models used to create the standardized indices. 

The operational CPUE data used for the analysis included all of the SPC data holdings, 
plus some data only held by Chinese Taipei which was integrated into the analyses undertaken 
for regions 4 and 6. Unfortunately, for this assessment it was not possible to incorporate non-
SPC data holdings from Korea and Japan which are the two historically dominant distant-water 
longline fleets. 

Coefficients of variation (CVs) for region-specific standardised effort were averaged to 
0.2 the period 1980-1990. This is different to the previous assessment which had much higher 
CVs for regions 5 and 6 due to the paucity of data. Using all flags led to CVs which were 
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comparable across all regions (McKechnie et al., 2014b) so it was decided that a similar mean 
CV be used for all regions.  

Another important input for the standardized indices is regional scaling factors 
incorporated to estimate the relative level of exploitable longline population among regions (see 
Langley et al. 2005, and, Hoyle and Langley 2007). In an improvement from previous years, 
Generalised Additive Models (GAMs) were used to model aggregate catch and effort data for the 
fleets from Japan, Korea, and Chinese Taipei (McKechnie et al. 2014a). This approach allowed 
the estimation of regional scaling factors for all years, though of course years with better 
coverage (and therefore less spatial interpolation) were more reliable. As some of the new CPUE 
series only started around 1980, the period 1980-1990 was used for the period to calculate the 
scalars to be applied to the standardized indices.  

The final CPUE indices used in the reference case model comprised Japanese-based 
indices for regions 1 and 2 (no other operational data was available, apart from a short time 
series of US data for region 2), all flags operational for regions 3, 7, and 8, nominal for region 9 
(very little fishing and only aggregate data was available). For region 4 we had initially used the 
all-flags CPUE, but this index led to an extreme ‘blowout’ in recruitment and biomass at the start 
of the model (see Section 10.3), so we replaced it with the Japanese index. All indices for which 
catchability was shared and assumed constant, i.e., the L-ALL fisheries in each region, are 
presented in Figure 7.  

For the other longline fisheries, the effort units were defined as the total number of 
hooks set. 

3.4.3 Other fisheries 

There has been continual improvement in the catch estimates from Indonesia and the 
Philippines through the GEF-WPEA project and for the first time we include some catch data 
from the small-fish fisheries in Vietnam. There is some uncertainty around the ‘other’ gears 
catch estimate for Indonesia in 2012 so the 2011 estimate was carried forward to 2012 pending 
further investigation. 

For these other fisheries, effort is either included in days fished, or more often set to 
'missing'. For the reference case model effort was set to missing for five fisheries, the three 
small-fish miscellaneous fisheries, the combined Indonesia and Philippines handline and ex-EEZ 
purse seine fisheries. A nominal effort of one was added for the final year of the model to allow 
the estimation of a catchability coefficient to assist with projections which are reported in 
Pilling et al. (2014a). 

3.5 Size data 

Available length-frequency data for each of the defined fisheries were compiled into 95 

2-cm size classes (10−12 cm to 198−200 cm). All weight data were recorded as processed 
weights (usually recorded to the nearest kg). Processing methods varied between fleets 
requiring the application of fishery-specific conversion factors to convert the available weight 
data to whole fish equivalents. Details of the conversion to whole weight are described in 
Langley et al. (2006). For each fishery, quarterly weight frequency data were compiled by 1 kg 
weight intervals over a range of 1-200 kg. Data were either collected onboard by fishers, 
through observer programmes, or through port sampling. Davies et al. (2011) provides more 
details on the source of the size data. 

Each length-frequency record in the model consisted of the actual number of bigeye 
tuna measured and Figure 8 provides details of the temporal availability of length and weight 
(for longline) frequency data and the relative sample sizes. Note that a maximum sample size of 
1000 was implemented in the assessment. 
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3.5.1 Purse seine 

Only length frequency samples are used in the assessments and the previous assessment 
used only observer samples which had been corrected for grab sample bias. As observer 
coverage had been very low and unrepresentative in early years, there were many gaps and the 
time series of size data did not show evidence of model progression. Two major changes were 
made for the current assessment and are described in detail in Abascal et al. (2014): first the 
long time series of port sampling data from Pago Pago was included, and second all samples 
were weighted by the catch – both at the set and strata level, with thresholds applied to ensure 
that small samples from important catch strata did not get too much weight (as was done for the 
longline fishery). Unfortunately full Pago Pago data are not available since 2008 as they have not 
yet been fully processed (V. Chan pers. comm.).   

3.5.2 Longline 

A detailed review of all available length and weight frequency data for bigeye tuna was 
undertaken, and McKechnie (2014) provides details of the analytical approaches for 
constructing this year’s data inputs. Key principles used in constructing the data inputs were 
that a) we would not use weight and length data at the same time – even if it was available – as it 
would either introduce conflict (if data were in disagreement) or dominate the model fit (if they 
were in agreement). Therefore, we considered the coverage and size of samples and typically 
chose to use weight frequency data where it was available. Japanese weight data were not 
available for regions 4, 5, and 6 in recent years and had to be supplemented by Japanese training 
vessel length data in region 4 and all flags length data in regions 5 and 6.  

The general approach used by McKechnie (2014) was that Japanese size data was 
weighted spatially in respect of the spatial distribution of catch within the region, and the size 
data from all fleets data were weighted by flag for some fisheries. For the catch weighting, a 
moving 11 quarter time window was used to calculate the relative importance of each stratum. 

3.5.3 Other fisheries 

Size data were either missing or poor for the Indonesian and Vietnamese small-fish 
fisheries and the Indonesian-Philippines ex-EEZ purse seine fishery. In the case of the first two, 
selectivity was assumed shared with the Philippines small-fish fishery and in the last case it was 
shared with the associated purse seine fishery also in region 7. 

Philippines: Size composition data for the Philippines domestic fisheries derived from a 

sampling programme conducted in the Philippines in 1993−94 were augmented with data from 

the 1980s and for 1995. In addition, data collected during 1997−2012 from the Philippines 
hand-line (PH HL 3) and surface fisheries (PH MISC 3) under the National Stock Assessment 
Project and in more recent years under the GEF-WPEA project were included in the current 
assessment.  

As for the 2011 assessment the length frequency samples from the small fish hook and line and 
large fish handline fisheries were adjusted to exclude all reported fish lengths greater than 90 
cm for PH MISC 3 from the current assessment. This was done on the basis that it is suspected 
that the presence of these large fish may be due to mis-reporting of the fishing gear in some of 
the regional sampling programmes.  

Japan coastal: Length data from the Japanese coastal purse-seine and pole-and-line fleets were 
provided by the National Research Institute of Far Seas Fisheries (NRIFSF). 

Pole-and-line:  For the equatorial pole-and-line fishery, length data were available from the 
Japanese distant-water fleet (sourced from NRIFSF) and from the domestic fleets (Solomon 
Islands and PNG). Since the late 1990s, most of the length data were collected by observers 
covering the Solomon Islands pole-and-line fleet. 
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3.6 Tagging data 

In previous assessments a modest amount of tagging data was available for 
incorporation into the MULTIFAN-CL analysis. These data consisted of bigeye tuna tag releases 
and returns from the OFP’s Regional Tuna Tagging Project (RTTP) conducted during 1989-
1992, and more recent (1995, 1999-2001) releases and returns from tagging conducted in the 
Coral Sea (CS) by CSIRO (Evans et al. 2008). Tags were released using standard tuna tagging 
equipment and techniques by trained scientists and technicians. The tag release effort was 
spread throughout the tropical western Pacific, between approximately 120-E and 170-W 
(Kaltongga 1998; Hampton and Williams 2005). 

For the 2011 bigeye tuna assessment (Davies et al. 2011), an additional tag data set was 
available from the recent Pacific Tuna Tagging Programme (PTTP) undertaken mainly in the 
western tropical Pacific from Indonesia to the Gilbert Islands of Kiribati (Caillot et al. 2013).  For 
the current assessment, all previously used tagging data were included, as well as additional 
PTTP releases undertaken up to and including the 2nd quarter of 2012. This represented an 
additional 18,753 bigeye tuna tag releases (unadjusted) compared to the data used for the 2011 
assessment.  

In the current assessment, the numbers of tag releases input to the assessment model 
were adjusted for a number of sources of tag loss – unusable recaptures due to lack of 
adequately resolved recapture data, estimates of tag loss (shedding and initial mortality) due to 
variable skill of taggers, and estimates of base levels of tag shedding/tag mortality. The 
procedures used in re-scaling the releases are described in detail in Berger et al. (2014), but 
essentially the re-scaling preserves the recovery rates of tags from the individual tag groups as 
if none of the tag loss had occurred.  

The complete data set includes a total of 15,245 adjusted releases, which were classified 
into 56 region/quarter tag release groups (Table 2). A total of 4,219 tag returns could be 
assigned to the fisheries included in the model. As for previous assessments, tag releases were 
stratified by release region, time period of release (quarter) and the same length classes used to 
stratify the length-frequency data. As was done for the 2011 assessment, tags released in the 
vicinity of Hawaii were not included in the tagging data set used in this assessment. Inclusion of 
these data in the model is problematic as all tags are released and recovered around the 
boundary of regions 2 and 4 (latitude 20° N). This results in large changes in the estimated 
movement coefficients between regions 2 and 4 and in other model parameters influenced by 
tagging data. Due to a paucity of recaptures and no information for reporting rates, bigeye 
tagging data from the Japanese tagging programme has been excluded. 

The returns from each size class of each tag release group were classified by recapture 
fishery and recapture time period (quarter). Because tag returns by purse seiners were often 
not accompanied by information concerning the set type, tag-return data were aggregated 
across set types for the purse seine fisheries in each region. The population dynamics model 
was in turn configured to predict equivalent estimated tag recaptures by these grouped 
fisheries. 

4 MODEL DESCRIPTION −−−− STRUCTURAL ASSUMPTIONS, 

PARAMETERISATION, AND PRIORS 

The model can be considered to consist of several components, (i) the dynamics of the 
fish population; (ii) the dynamics of the fisheries; (iii) the dynamics of tagged fish; (iv) 
observation models for the data; (v) parameter estimation procedure; and (vi) stock assessment 

interpretations. Detailed technical descriptions of components (i) − (iv) in respect of the 
MULTIFAN-CL modelling software are given in Hampton and Fournier (2001) and Kleiber et al 
(2013), and are not repeated here. 
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4.1 Population dynamics 

The model partitions the population into 9 spatial regions (see section 3.1) and 40 
quarterly age-classes (see section 3.2). The last age-class comprises a “plus group” in which 
mortality and other characteristics are assumed to be constant. The population is “monitored” 

in the model at quarterly time steps, extending through a time window of 1952−2012. The main 
population dynamics processes are as follows: 

4.1.1 Recruitment 

Recruitment is defined as the appearance of age-class 1 fish in the population. Tropical 
tuna spawning does not follow a clear seasonal pattern but at least for yellowfin tuna it occurs 
sporadically when food supplies are plentiful (Itano 2000). It was assumed that recruitment 
occurs instantaneously at the beginning of each quarter. This is a discrete approximation to 
continuous recruitment, but provides sufficient flexibility to allow a range of variability to be 
incorporated into the estimates as appropriate.  

The distribution of recruitment among the model regions was estimated within the 
model and allowed to vary over time in a relatively unconstrained fashion. The time-series 
variation in spatially-aggregated recruitment was somewhat constrained by a lognormal prior. 
The variance of the prior was set such that spatially aggregated recruitments of about three 
times and one third of the average recruitment would occur about once every 25 years on 
average. 

Spatially-aggregated recruitment was assumed to have a weak relationship with the 
spawning biomass via a Beverton and Holt stock-recruitment relationship (SRR) with a fixed 
value of steepness (h). Steepness is defined as the ratio of the equilibrium recruitment produced 
by 20% of the equilibrium unexploited spawning biomass to that produced by the equilibrium 
unexploited spawning biomass (Mace and Doonan 1988; Maunder and Watters 2001).  

The SRR was incorporated mainly so that yield analysis could be undertaken for stock 
assessment purposes, particularly the determination of equilibrium based reference points. We 
therefore opted to apply a relatively weak penalty for deviation from the SRR so that it would 
have negligible effect on the recruitment and other model estimates (see Hampton and Fournier 
2001, Appendix D). 

Typically, fisheries data are not very informative about the steepness parameter of the 
SRR parameters; hence, the steepness parameter was fixed at a moderate value (0.80) and the 
sensitivity of the model results to the value of steepness was explored via model sensitivities 
with lower (0.65) and higher (0.95) values of steepness. 

4.1.2 Initial population 

The population age structure in the initial time period in each region was assumed to be 
in equilibrium and determined as a function of the average total mortality during the first 20 
quarters. This assumption avoids having to treat the initial age structure, which is generally 
poorly determined, as independent parameters in the model. The initial age structure was 
applied to the initial recruitment estimates to obtain the initial populations in each region. 

4.1.3 Growth 

The standard assumptions made concerning age and growth are (i) the lengths-at-age 
are normally distributed for each age-class; (ii) the mean lengths-at-age follow a von Bertalanffy 
growth curve; (iii) the standard deviations of length for each age-class are a log-linear function 
of the mean lengths-at-age; and (iv) the probability distributions of weights-at-age are a 
deterministic function of the lengths-at-age and a specified weight-length relationship. These 
processes are assumed to be regionally invariant. 

As noted above, the population is partitioned into quarterly age-classes with an 
aggregate class for the maximum age (plus-group). The aggregate age class makes possible the 
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accumulation of old and large fish, which is likely in the early years of the fishery when 
exploitation rates were very low. 

Based upon previous analyses assuming a standard von Bertalanffy growth pattern, 
substantial departures from the model may be indicated, particularly for fish of small sizes (see 
Section 2.2). We therefore modelled growth by allowing the mean lengths of the first eight 
quarterly age-classes to be independent parameters, with the remaining mean lengths following 
a von Bertalanffy growth curve. These deviations attract a small penalty to avoid over-fitting the 
size data. Early model runs indicated a tendency for the model to converge to implausibly large 
estimates of the mean length of the oldest age class (L2). Therefore, we opted to fix L2 in the 
reference case at 184 cm, based on examination of the likelihood profile. Two other values of L2 
(178 and 190 cm) were used in sensitivity analysis.  

4.1.4 Movement 

Movement was assumed to occur instantaneously at the beginning of each quarter via 
movement coefficients that connect regions sharing a common boundary. Note that fish can 
move between non-contiguous regions in a single time step due to the “implicit transition” 
computational algorithm employed (see Hampton and Fournier 2001; Kleiber et al. 2013 for 
details). Movement is parameterised as the proportion of fish in a given region that move to the 
adjacent region. Across each inter-regional boundary in the model, movement is possible in 
both directions for the four quarters, each with their own movement coefficients. Thus the 
number of movement parameters is 2×no.regions×4quarters. The seasonal pattern of 
movement persists from year to year with no allowance for longer-term variation in movement. 
Usually there are limited data available to estimate age-specific movement and the movement 
coefficients are normally invariant with respect to age. 

A prior of 0.1 is assumed for all movement coefficients, inferring a relatively high mixing 
rate between regions. A small penalty is applied to deviations from the prior. Evaluation of 
much lower prior values during the model development phase did not lead to different 
movement estimates. 

4.1.5 Natural mortality 

Natural mortality (M) may be held fixed at pre-determined age-specific levels or 
estimated as an age-specific parameters. Natural mortality at age was recalculated for previous 
assessments using an approach applied to other tunas (Harley and Maunder 2003, Hoyle 2008, 
Hoyle and Nicol 2008) in the WCPO and EPO. The generally increasing proportion of males in 
the catch with increasing size is assumed to be due to an increase in the natural mortality of 
females, associated with sexual maturity and the onset of reproduction. The externally-
estimated M-at-age were assumed as fixed parameters in the model, as shown in Figure 9. 
Model runs were also undertaken where M-at-age was estimated. 

 
4.1.6 Sexual maturity 

Reproductive output at age, which is used to derive spawning biomass, was taken 
directly from the previous assessment. The maturity-at-age was calculated based on data 
collected in the WCPO, and based on relative reproductive potential rather than the relative 
biomass of both sexes above the age of female maturity. This approach was previously applied 
to albacore (Hoyle 2008) and bigeye (Hoyle and Nicol 2008) tunas in the WCPO. The 
reproductive potential of each age class was assumed to be the product of the proportion of 
females at age, the proportion of females mature at age, the spawning frequency at age of 
mature females, and the fecundity at age per spawning of mature females (Figure 9). Overall, 
this results in a slight shift in the age of first maturity and a substantial reduction in the 
reproductive potential for older age classes.  
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4.2 Fishery dynamics 

The interaction of the fisheries with the population occurs through fishing mortality. 

Fishing mortality is assumed to be a composite of several separable processes − selectivity, 
which describes the age-specific pattern of fishing mortality; catchability, which scales fishing 

effort to fishing mortality; and effort deviations, which are a random effect in the fishing effort − 
fishing mortality relationship. 

4.2.1 Selectivity 

In many stock assessment models, selectivity is modelled as a functional relationship 
with age, e.g. using a logistic curve to model monotonically increasing selectivity and various 
dome-shaped curves to model fisheries that select neither the youngest nor oldest fish. 

Modelling selectivity with separate age-specific coefficients (with a range of 0−1), constrained 
with smoothing penalties, has the disadvantage of requiring a large number of parameters. 
Instead, we have used a method based on a cubic spline interpolation. This is a form of 
smoothing, but the number of parameters for each fishery is the number of cubic spline “nodes” 
that are deemed to be sufficient to characterise selectivity over the age range. We chose five 
nodes, which historically seemed to be sufficient to allow for reasonably complex selectivity 
patterns. For particular fisheries alternative functions were employed, including logistic and 
non-decreasing. In all cases, selectivity is assumed to be fishery-specific and time-invariant. 
However, it is possible for a single selectivity function to be “shared” among a group of fisheries 
that have similar operational characteristics and/or exist in similar areas and with similar size 
compositions. This grouping facilitates a reduction in the number parameters being estimated 
and the groupings used are provided in Table 4. 

4.2.2 Catchability 

Constant catchability (time-invariant) was estimated for all fisheries for which 
standardised indices of relative abundance were available. As noted earlier, this assumption is 
similar to assuming that the CPUE for these fisheries indexes the exploitable abundance both 
among areas and over time. The “main” longline fisheries were grouped for the purpose of 
initial catchability, and to maintain the relativity of catch rates among regions.  

For all other fisheries, catchability was allowed to vary slowly over time (akin to a 
random walk) using a structural time-series approach. Random walk steps were taken every 
two years, and the deviations were constrained by prior distributions of mean zero and variance 
specified for the different fisheries according to our prior belief regarding the extent to which 
catchability may have changed. For fisheries having no available effort estimates (e.g. the 
Philippines and Indonesian surface fisheries), partial fishing mortalities were estimated 
consistent with the observed catches using a Newton-Raphson procedure. Therefore, 
catchability deviations (and effort deviations) are not estimated for these fisheries. For the 
other fisheries with time-series variability in catchability, the catchability deviation priors were 
assigned a variance approximating a CV of 0.10.  

Apart from those fisheries for which the data were based on annual estimates, the 
catchabilities of all other fisheries were allowed to vary seasonally. 

4.2.3 Effort deviations 

Effort deviations were used to model the random variation in the effort – fishing 
mortality relationship, and may be constrained by pre-specified prior distributions.  

The region-specific CPUE indices represent the principal indices of stock abundance, and 
the extent to which the model can deviate from the indices is moderated by the penalty weights 
assigned to the standardised effort series. The precision of the CPUE indices varies temporally 
and among regions and, therefore, a relative weighting on the individual effort observations in 
each time period was implemented according to the canonical variance estimates derived from 
the GLM (Francis 1999).  
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Unlike the 2011 assessment where the CVs varied regionally due to varying data quality, 
the regional differences in the estimated CVs were sufficiently small that we assumed the same 
average CV for all indices; the average CV for the period 1980-90 was set to 0.2 (see Section 
3.4.2). The resulting scaled CVs were transformed to an effort deviation penalty for each CPUE 
observation in MULTIFAN-CL. Penalties are inversely related to variance, such that lower effort 
penalties are associated with indices having high variance, consequently these indices are less 
influential in fitting the model. 

4.3 Dynamics of tagged fish 

4.3.1 Tag mixing 

The population dynamics of the fully recruited tagged and untagged populations are 
governed by the same model structures and parameters. The populations differ in respect of the 
recruitment process, which for the tagged population is the release of tagged fish, i.e. an 
individual tag and release event is the recruitment for that tagged population. Implicitly, we 
assume that the probability of recapturing a given tagged fish is the same as the probability of 
catching any given untagged fish in the same region and time period. For this assumption to be 
valid either the distribution of fishing effort must be random with respect to tagged and 
untagged fish and/or the tagged fish must be randomly mixed with the untagged fish. The 
former condition is unlikely to be met because fishing effort is almost never randomly 
distributed in space. The second condition is also unlikely to be met soon after release because 
of insufficient time for mixing to take place. Depending on the disposition of fishing effort in 
relation to tag release sites, the probability of capture of tagged fish soon after release may be 
different to that for the untagged fish. It is therefore desirable to designate one or more time 
periods after release as “pre-mixed” and compute fishing mortality for the tagged fish based on 
the actual recaptures, corrected for tag reporting (see below), rather than use fishing 
mortalities based on the general population parameters. This in effect de-sensitises the 
likelihood function to tag recaptures in the pre-mixed periods while correctly discounting the 
tagged population for the recaptures that occurred.  

We assumed that tagged bigeye mix fairly quickly with the untagged population at the 
region level and that this mixing process is complete by the end of the second quarter after 
release. 

4.3.2 Tag reporting 

In principle, tag-reporting rates can be estimated internally within the model. In 
practice, experience has shown that independent information on tag-reporting rates for at least 
some fisheries tends to be required for reasonably stable estimates to be obtained. We provided 
reporting rate priors for all fisheries that reflect our prior information regarding the reporting 
rate and the confidence we have in that information.  

Previous assessments have assumed that fishery-specific reporting rates are constant 
over time. This assumption was reasonable when most of the tag data were associated with a 
single tagging programme. However, tag reporting rates may vary considerably between 
tagging programmes due to changes in the composition and operation of individual fisheries 
and different levels of tag programme publicity and follow-up. Consequently, fishery-specific tag 
reporting rates were estimated that are also specific to individual tagging programmes, i.e. a 
reporting rate matrix. Tag recapture and reporting rate groupings are provided in Table 4. 

The estimation of the reporting rates included penalty terms in respect of pre-
determined priors. These were derived from analyses of tag seeding experiments (Berger et al. 
2014) and other information (Hampton 1997). For the RTTP and PTTP, relatively informative 
priors were formulated for the equatorial purse seine fisheries given the larger extent of 
information available. 

All reporting rates were assumed to be stable over time. 
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4.4 Likelihood components 

There are four data components that contribute to the log-likelihood function — the 
total catch data, the length-frequency data, the weight-frequency data and the tagging data. The 
observed total catch data are assumed to be unbiased and relatively precise, with the SD of 
residuals on the log scale being 0.007. 

The probability distributions for the length-frequency proportions are assumed to be 
approximated by robust normal distributions, with the variance determined by the effective 
sample size and the observed length-frequency proportion. A similar likelihood function was 
used for the weight-frequency data. 

The size frequency data are assigned an effective sample size lower than the number of 
fish sampled. Reduction of the effective sample size recognises that (i) length- and weight-
frequency samples are not truly random (because of clumping in the population with respect to 
size) and would have higher variance as a result; and (ii) the model does not include all possible 
process error, resulting in further under-estimation of variances. The relative weighting of the 
longline size frequency is comparable to the approach used in the 2011 assessment (n/20). 

A log-likelihood component for the tag data was computed using a negative binomial 
distribution. The negative binomial is preferred over the more commonly used Poisson 
distribution because tagging data often exhibit more variability than can be attributed by the 
Poisson. We have employed a parameterisation of the variance parameters such that as they 
approach infinity, the negative binomial approaches the Poisson. Therefore, if the tag return 
data show high variability (for example, due to contagion or non-independence of tags), then 
the negative binomial is able to recognise this. This should then provide a more realistic 
weighting of the tag return data in the overall log-likelihood and allow the variability to impact 
the confidence intervals of estimated parameters. However, early attempts at estimating 
fishery-specific variance parameters from the data yielded values at either bound, suggesting 
insufficient information was available. A fixed value at the midpoint of the variance range was 
therefore assumed for all fisheries. Stock assessment results were relatively insensitive to the 
choice of the variance level. A complete derivation and description of the negative binomial 
likelihood function for tagging data is provided in Hampton and Fournier (2001) (Appendix C). 

4.5 Parameter estimation and uncertainty 

The parameters of the model were estimated by maximizing the log-likelihoods of the 
data plus the log of the probability density functions of the priors and smoothing penalties 
specified in the model. The maximization to a point of model convergence was performed by an 
efficient optimization using exact derivatives with respect to the model parameters (auto-
differentiation, Fournier et al. 2012). Estimation was conducted in a series of phases, the first of 
which used arbitrary starting values for most parameters. A bash shell script, doitall, (Annex 
10.5) implements the phased procedure for fitting the model. Some parameters were assigned 
specified starting values consistent with available biological information. The values of these 
parameters are provided in the bet.ini file (Annex 10.6)2.  

In this assessment two approaches were used to describe the uncertainty in key model 
outputs. The first estimates the statistical variation within a given assessment run, while the 
second focuses on the structural uncertainty in the assessment by considering the variation 
among model runs. For the first approach, the Hessian matrix was calculated for the reference 
case model run to obtain estimates of the covariance matrix, which is used in combination with 
the Delta method to compute approximate confidence intervals for parameters of interest (the 
biomass and recruitment trajectories). For the second approach, a crosswise grid of model runs 

                                                             

2 Details of elements of the doitall and .ini files as well as other input files that structure a MULTIFAN-CL 
run are given in Kleiber et al. (2013). 
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was undertaken which incorporated many of the options of uncertainty explored by the key 
model runs and one-off sensitivity analyses. This procedure attempts to describe the main 
sources of structural and data uncertainty in the assessment. 

For highly complex population models fitted to large amounts of often conflicting data, it 
is common for there to be difficulties in estimating absolute abundance (Lee et al., 2014). 
Therefore, a profile likelihood analysis was done of the marginal posterior likelihood in 
respect of the total population scaling parameter. Reasonable contrast in the profile was taken 
as indicating sufficient information existed in the data for estimating absolute abundance, and 
also offered confirmation of the global minimum obtained by the maximum likelihood estimate. 

Due to the low number of observations for recent cohorts, recruitment estimates in the 
terminal model time periods may be poorly estimated. This was investigated using 
retrospective analysis where data from the terminal time periods (the last three years) were 
successively removed and the model fitted to each case. The terminal recruitments and biomass 
estimates were compared among the retrospective models for their robustness to the loss of 
data. Whether or not to estimate the terminal recruitments was based upon the outcome of this 
analysis (see Section 10.2).  

4.6 Stock assessment interpretation methods 

Several ancillary analyses using the converged model were conducted in order to 
interpret the results for stock assessment purposes. The methods involved are summarized 
below and the details can be found in Kleiber et al. (2013). Note that, in each case, these 
ancillary analyses are completely integrated into the model, and therefore confidence intervals 
for quantities of interest are available using the Hessian-Delta approach.  

4.6.1 Reference points 

The unfished spawning biomass (SBF=0) in each time period was calculated given the 
estimated recruitments and the Beverton-Holt spawner-recruit relationship. This offers a basis 
for comparing the exploited population relative to the population subject to natural mortality 
only. WCPFC adopted 20%SBF=0 as a limit reference point for the bigeye stock when SBF=0 is 
calculated as the average over the period 2002-2011. 

4.6.2 Fishery impact 

Many assessments estimate the ratio of recent to initial biomass as an index of fishery 
depletion. The problem with this approach is that recruitment may vary considerably 
throughout the time series, and if either the initial or recent biomass estimates (or both) are 
“non-representative” because of recruitment variability or uncertainty, then the ratio may not 
measure fishery depletion, but simply reflect recruitment variability. 

We approach this problem by computing the biomass time series (at the region level) 
using the estimated model parameters, but assuming that fishing mortality was zero. Because 
both the real biomass Bt and the unexploited biomass B0t incorporate recruitment variability, 

their ratio at each time step of the analysis 
t

t

B

B

0

 can be interpreted as an index of fishery 

depletion. The computation of unexploited biomass includes an adjustment in recruitment to 
acknowledge the possibility of reduction of recruitment in exploited populations through stock-
recruitment effects. This analysis was conducted in respect of groups of fisheries so as to 
describe the relative fishing impacts of each group on the population. 

4.6.3 Yield analysis 

The yield analysis consists of computing equilibrium catch (or yield) and biomass, 
conditional on a specified basal level of age-specific fishing mortality (Fa) for the entire model 
domain, a series of fishing mortality multipliers, fmult, the natural mortality-at-age (Ma), the 
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mean weight-at-age (wa) and the SRR parameters. All of these parameters, apart from fmult, 

which is arbitrarily specified over a range of 0−50 in increments of 0.1, are available from the 
parameter estimates of the model. The maximum yield with respect to fmult can easily be 
determined and is equivalent to the MSY. Similarly the spawning potential biomass at MSY 
(SBMSY) can also be determined. The ratios of the current (or recent average) levels of fishing 
mortality and biomass to their respective levels at MSY are of interest as reference points. These 
ratios were also determined for the principal assessment model with alternative values of 
steepness assumed for the SRR.  

For the standard yield analysis, the Fa are determined as the average over some recent 

period of time. In this assessment, we use the average over the period 2008−2011. We do not 
include 2012 in the average as fishing mortality tends to have high uncertainty for the terminal 
data year of the analysis and the catch and effort data for this terminal year are usually 
incomplete. 

The MSY-based reference points were also computed using the average annual Fa from 

each year included in the model (1952−2012). This enabled temporal trends in the reference 
points to be assessed and a consideration of the differences in MSY levels under historical 
patterns of age-specific exploitation. 

The assessments indicate that recruitment over particular periods had higher 
uncertainty. Consequently, yield estimates based on the long-term equilibrium recruitment 
estimated from a Beverton and Holt SRR fitted to all estimated recruitments may substantially 
bias the yields currently available from the stock under current recruitment conditions. For this 
reason, a separate yield analysis was conducted based on the SRR estimated for the levels of 
recruitment and spawning potential that occurred in subsets of the model calculation period.  

5 MODEL RUNS 

5.1 Developments from the 2011 assessment 

A substantial number of changes have occurred between the 2011 reference case model 
and the 2014 reference case model. Many of these changes came about through implementation 
of recommendations of the independent review (Ianelli et al. 2012) which impacted modelling 
assumptions, the MULTIFAN-CL software, the input data, and methods used to generate the 
input data. Many more occurred through general improvements to data and approaches that 
came about over the three years since the 2011 assessment. Subsequently the 2014 PAW 
discussed the need to balance the ‘one-change at a time’ recommendation from Ianelli et al. 
(2012), with a pragmatic approach that recognized the sheer magnitude of changes being made 
and the impossibility of keeping a ‘step-by-step’ account while attempting to develop the best  
2014 reference case model. The PAW noted the importance of identifying the causes of 
significant changes in model quantities and this is what we have done here. 

Section 10.3 provides results of several of the steps between the 2011 and 2014 
reference case assessments. Section 10.4 describes the impact of several changes to modelling 
assumptions which were implemented between the two assessments, but compared to the 2014 
reference case, to assist in understanding the potential impact. Below we describe the approach 
that was undertaken in developing the 2014 reference case. 

i. Rerun the 2011 assessment with the new MULTIFAN-CL: Since the version used for 
the 2011 assessment, there have been at least four significant improvements in 
MULTIFAN-CL to the: tagging catch calculations; tagging likelihood; Newton-
Raphson catch calculation; and, the penalty calculation in respect of priors on 
fishery-specific tag reporting rates; 

ii. Update the 2011 fishery and spatial structures with data through to 2012: We 
undertook little examination of this model and made no attempts to improve it 
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through examination of model fit and fishery groupings, but did apply some of the 
improved approaches for constructing data inputs and did introduce the lognormal 
bias correction in equilibrium recruitment computations. 

iii. Move to the nine-region / 33 fishery model structure: This initial move was an 
extremely complex task. New regions and new fisheries meant new size and weight 
frequency data for many fisheries. At this stage we were still using the previous 
Japanese CPUE which was only available for six regions – region 3 CPUE was used 
for regions 3, 7, and 8. We began investigation of functional forms for selectivity and 
different grouping for selectivity depending on the nature of data (i.e., both 
availability of data and whether the data were consistent through time or highly 
variable) in different regions. At this stage we spent three weeks [unsuccessfully] 
trying to understand the cause of the large spike in the most recent recruitments 
(see section 10.4). On the basis of the retrospective analysis, it was decided to set the 
deviations from the spatially-aggregated SRR equilibrium recruitment to zero for the 
terminal six time periods of the model. 

iv. Transition to the new all-flags CPUE: We swapped in the all-flags CPUE for regions 3-
8 and we immediately noticed a large increase in the early recruitment and 
spawning potential. Some time was spent investigating the cause of this and it was 
isolated to the region 4 series, for which the early data were dominated by 
observations in the albacore cluster (McKechnie et al. 2014b).  

v. Inclusion of the Japanese CPUE for region 4: This model removed the pattern seen 
using the all flags series for region four and was the focus of further considerable 
work on selectivity groupings and functional forms. Once a reference case had been 
found, we undertook a likelihood profile over the population scaling parameter and 
determined that this model in fact represented a local minimum and that a better fit 
could be achieved with slightly larger mean length of the oldest age class (L2) and 
slightly different movement rates for region 2. These different results gave almost 
identical stock status results. Further profiling identified a better fit with L2 in the 
mid 190 cm range – this size was considered too large for the WCPO and was also 
associated with a considerable reduction in estimated growth variability. 

vi. Final reference case: starting from the best minimum found from the first likelihood 
profile. We fixed L2 at 184cm and estimated all other parameters and had a fit over 
60 likelihood points better than the previous model.   

A summary of the major differences between the 2011 and final 2014 reference case is 
provided in Table 3. 

5.2 Sensitivity analyses 

The recommendations of the 2014 PAW formed the basis for several of the one-off 
sensitivity analyses undertaken from the reference case, but several other runs were 
undertaken in order to provide a better understanding of the impact of some of the changes in 
modelling assumptions. The eight ‘key’ sensitivity runs for which full details of management 
quantities have been calculated are provided in Table 5 and a further four model runs are 
provided in Table 10.4 1. These analyses can be divided in to five parts in respect of the 
assumptions being tested:   

Size data relative weighting  

In integrated stock assessment models such as this, the choice of weight for the size data 
likelihood component (SZ_dw) is somewhat arbitrary. It is therefore standard procedure to test 
the assumption used for the reference case in a sensitivity analysis. The relative influence of the 
length and weight composition data for all fisheries was reduced (i.e. a lower SZ_dw) by 
assigning an effective sample size of 0.02 (0.05 in the reference case) times the individual 
samples, with a maximum sample size of 20 (50 in the reference case). This explores the relative 
influence of size composition data upon the model estimates and illustrates data conflicts. 
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Mean length of the oldest age class (L2) 

Model development indicated that this was a difficult parameter to estimate so it was 
fixed at 178 cm (L2_178) and 190 cm (L2_190cm). The smaller size represents a value close to 
that estimated in the previous assessment and in the model run upon which likelihood profiling 
occurred. The higher value is a further 6cm larger than the reference case assumption. 

Tagging data 

Reduce the tag mixing period to 1 quarter (Mix_1) and extend the mixing period for 
those Coral Sea releases to 28 quarters or essentially the period over which most recoveries 
occurred (Mix_CS). 

Steepness 

Fixed values of 0.65 (h_0.65) and 0.95 (h_0.95). Generally there is limited information 
available to define an appropriate value of steepness for tuna species and, consequently, lower 
(0.65) and higher (0.95) plausible values were examined.  

In an exploratory model run (“h_est”) steepness was also estimated, largely for purposes 
of comparison with previous assessments.  

Natural mortality 

Estimate age-specific natural mortality schedule (M_est). Given the large amount of tag-
recapture data input to the model, it was considered feasible to estimate natural mortality.  

Recruitment 

Three exploratory models were run that tested the sensitivity to assumptions regarding 
the estimated recruitments and the spawner recruitment curve. The model run “Final Rdevs” 
included the estimation of the terminal six temporal recruitment deviates. The model run “Early 
Rdevs” included the recruitments estimated over the full model calculation period in fitting the 
SRR, and the model “Bias correction” excluded the bias correction from the fitting of the SRR. 

The eight sensitivity runs in bold above were taken as the key model runs for examining 
the effects of the primary sources of uncertainty on management reference points in the current 
assessment. 

5.3 Structural uncertainty 

Following Hoyle et al. (2008) examination of uncertainty in the model structure was 
integrated into a single analysis that explored the interactions of the assumptions tested in the 
one-off sensitivity runs, i.e. for the key model runs, and that test the alternative assumptions 
recommended by the PAW. These interactions were tested in a grid of 108 combinations of the 
following options: 

• Length at oldest age (L2) [3 levels]: Ref.Case (184cm), L2_178 (178 cm), and L2_190 
(190cm) 

• Tag mixing period [3 levels]: Ref.Case (2 quarters), Mix_1 (1 quarter), and Mix_CS (28 
quarters for Coral Sea releases) 

• Steepness[3 levels]: Ref.Case (0.8), h_0.65 (0.65), h0.95 (0.95) 

• Size data weighting [2 levels]: Ref.Case (n/20), SZ_dw (n/50) 

• Natural mortality [2 levels]: Ref.Case (fixed values), M_est (estimated) 

The independent review (Ianelli et al. 2012) recommended consideration of approaches 
for the weighting of various sensitivity analyses. We have not done this here but suggest this be 
considered by a small group following presentation of the assessment at SC10. 
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6 RESULTS 

6.1 Model diagnostics (reference case) 

A brief review follows of the fit of the model to the four data sources: the standardised 
CPUE for the longline fisheries, the size composition data, and the tagging data.  The penalty for 
fitting the catch data is sufficiently high that the fit is essentially perfect so is not discussed 
further. 

Longline CPUE  

The fit to the standardised indices is provided in Figure 10 and the fit residuals, with a 
smoother, are provided in Figure 11. Overall the model fits very well to the observed CPUE 
series, but Figure 11 does suggest some slight lack of fit in regions 4 and 8 at the end of the time 
series. In region 4 the model predicts a greater decline in recent years and in region 8 the model 
predicts more stable biomass than that observed. 

Size composition data 

Two diagnostics are presented to illustrate the fit of the model to the observed size 
composition data: Figure 12 and Figure 13 show the aggregated (across all observations for a 
fishery) observed and predicted length and weight frequencies for each fishery, and Figure 14 
and Figure 15 the predicted and observed median lengths and weight over time. Not 
surprisingly the same general patterns of fit or lack of fit are apparent in both sets, but the latter 
series of plots provides a temporal dimension to the comparison. Some of the examples of lack 
of fit are related to grouping of selectivity curves (Table 4) which was often necessary to avoid 
the poorly estimated individual selectivity curves.  

The model overestimated the number of large fish in the region 3 offshore longline 
fishery (Figure 12), but examination of the temporal patterns suggests that most of the problem 
lies in conflict between samples at the start and end of the time series (Figure 14). Given that 
this was a mixed-fleet fishery such a pattern is not surprising and was also apparent in the 
length frequency samples that were used at the end of the time series for the L-ALL fisheries in 
region 5 and 6 to supplement the lack of Japanese weight frequency data (Figure 13 and Figure 
15). We considered excluding these length samples, but given that selectivity was shared with 
other fisheries we decided to include them as they had little impact on the model. The L-ALL 
fishery in region 8 also had a relatively poor overall fit, but again there was strong variation 
through time in the weight frequency samples. 

With the exception of the L-ALL 5 and 6 length data fits mentioned above, the fit to the 
length data for the fisheries was generally quite good (Figure 13 and Figure 15), recognizing 
that some of the data for the smaller volume fisheries was very poor. As observed in previous 
assessments, there is some lack of fit of smaller fish in the purse seine fisheries. This issue was 
investigated in detail and covered in the discussion and future work recommendations. 
Attempts to improve the fit using alternative selectivity curves lead to very poor growth 
estimates, so in the end we allowed the small systematic misfit in exchange for biologically 
plausible growth. 

Tagging data 

Three diagnostic plots have been presented to evaluate the quality of the tagging data 
fit: Figure 16 provides the predicted and observed recaptures of tagged fish by time period at 
liberty (quarter) from the region of release to the region of recapture; Figure 17 shows 
observed and predicted recaptures by time period specific to each release program; and Figure 
18 shows observed and predicted tag attrition for the reference case across all tag release 
events. 

The previous assessment contained poor fits to some tagging data, in particular tag 
releases that had occurred in the Coral Sea under the RTTP and the later Coral Sea tagging 
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undertaken by CSIRO. The fit to these data in particular has been much improved through the 
new spatial and fishery structures (compare Figure 23 and 30 from Davies et al. 2011 with 
Figure 16 and Figure 17) but there is still a slight underestimate of tag recaptures. Predicted 
recaptures within region 5 and 9 of these releases is good, but outside these areas it is poor – 
associated with the very low general reporting rate for longline fisheries. As indicated above, 
overall the fit to the tagging data is much improved, but in the tag attrition plot (Figure 18) 
there is evidence for overestimation of tag returns at 7-9 quarters after release. 

6.2 Model parameter estimates (reference case) 

 

Tag Reporting Rates 

With the expanded spatial and fishery structure, 55 individual reporting rates of 
recaptured tagged bigeye, specific to release group (program) and recapture fishery, were 
estimated and these are presented in Figure 19 with the prior distribution that was assumed. As 
could be expected, tag reporting rates for individual fisheries differed both among fisheries and 
tagging programmes. The grouping assumed among fisheries and programmes are shown in 
Table 4, and essentially entails the longline fisheries (1,2,4:9,13) being in the same group over 
all the tagging programs, while other fisheries retained the same fishery-specific grouping, but a 
program-specific rate was estimated for each group. Informative priors for the tag reporting 
rates were available for a number of the main fisheries, most notably the tag recoveries by the 
purse-seine fisheries from the RTTP and PTTP programmes. 

For all programmes, some of the reporting rate estimates were estimated to be higher 
than the mode of their prior distributions and tended to vary considerably between regions. The 
estimate for the largest longline fishery group (1) was below the prior, while for other longline 
fisheries the estimates were highly variable, ranging from near zero (region 5) to the upper limit 
allowed (0.9, region 9). However, the estimated reporting rates from the longline fisheries are 
based on a very small number of tag recoveries and, consequently, the tag recovery data from 
these fisheries are not very informative. 

Reporting rates were estimated to be at the upper bound for purse seine in region 4 and 
8, and the Indonesia-Philippines purse seine fishery in region 7. The high reporting rates in 
regions 4 and 8 are consistent with the patterns observed in the effort deviations for the 
standardised fisheries in those regions – suggesting potential data conflict. Reporting rates were 
also high for Australian longline vessels in region 5, much higher than they were for the region 9 
reporting rates.  

The very low estimated reporting rates for Coral Sea release group recaptures in small-
fish fisheries in regions 3 and 7 is not surprising given the sizes of fish tagged, nor is the 
reporting rate for Vietnam small-fish fisheries as this has not been an area of focus for tag 
recovery publicity. 

Growth 

In the reference case model the L2 parameter was fixed at 184 cm (Figure 20), slightly 
larger than the value estimated by Davies et al. (2011) of 179 cm. The estimated variation in 
length at age was quite tight compared to previous assessments and that for yellowfin tuna 
(Davies et al. 2014). Estimation of growth is a high priority for further biological and modelling 
work and this is discussed later in this paper. 

Selectivity 

The definition of new fisheries required new consideration of selectivity curves and 
grouping of selectivity across fisheries (Table 4). In the current assessment and the new 
fisheries structure, obtaining stable and sensible selectivity estimates was sometimes difficult 
(Figure 21). The smoothing splines that were used for many fisheries occasionally estimated a 
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high selectivity for age class 1 – a spike at an age where no fish were caught so it was an issue 
with the functional form. In some instances this required grouping fisheries to avoid this 
problem, but this typically only occurred for fisheries with small catches and poor size data (e.g., 
LL-ALL in region 5). 

The splitting of region 3 into regions 3, 7, and 8 proved important for both the L-ALL 
and the offshore LL fishery (region 3 and 7) with quite different selectivity curves estimated, 
e.g., for the L-OS-7 fishery an asymptotic curve fitted best while the L-OS-3 fishery had a 
strongly declining right-hand limb. 

Some of the smaller and less important surface fisheries often had a increasing right 
hand ‘limb’ from their splines – the fit was slightly improved, but there were so few 
observations of catches at larger sizes that these curves were constrained to zero selectivity at 
older ages. 

We had some difficulty getting high enough selectivity for the younger ages in the purse 
seine fishery with the current spline settings, but increased flexibility in the splines and length-
based selectivity led to biologically implausible growth estimates. This is discussed in detail 
later in this paper. 

Selectivity functions are temporally invariant. However, for a number of fisheries there 
is a clear temporal change in the size-frequency data and an associated lack of fit to the 
predicted size composition. This is particularly evident for the L ALL 2 and 4 fisheries. Further 
examination of these data is necessary to determine if they reflect a change in the selectivity in 
the fishery (through either operational changes or changes in the locations fished) or simply 
unrepresentative sampling data. 

Catchability 

Time-series changes in catchability were estimated for several fisheries and these are 
presented in Figure 22. Of particular interest is that in the major purse seine fisheries (regions 
3, 4, and 8) catchability is estimated to have been stable or strongly increasing in recent years. 
The strong increasing trends are suggestive of effort creep or technological advances in the 
purse seine fishery such that a unit of effort is more effective than it was in the past.  

Movement 

Two representations of movement estimates are shown in Figure 23 and Figure 24. The 
estimated movement coefficients for adjacent model regions are shown in Figure 24. These 
patterns not surprisingly show strong movement between the new regions that make up the old 
region 3. Figure 23 probably provides the simplest way to understand the collective impact of 
the movements coefficients. They show that for regions 1, 2, 5, 6, and 9, most of the biomass 
comes from the model's estimates of local recruitment, while for regions 3, 4, 7, and 8 there is 
considerable mixing of fish. Nevertheless, these results should be taken in context of the strong 
confounding within the model of the regional recruitment and movement parameters, which is 
the focus of some discussion later in the paper. 

6.3 Stock assessment results  

Symbols used in the following discussion are defined in Table 6 and the key results are 
provided in Table 7.  

6.3.1 Recruitment 

The reference case recruitment estimates (aggregated by year for ease of display) for 
each region and the entire WCPO are shown in Figure 25. A key feature of previous assessments 
has been the low recruitment during the first half of the model time series followed by much 
higher recruitment in the second half. The extent of this phenomenon has been greatly reduced 
in the current assessment, mostly through higher estimated recruitment in the first half of the 
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time series (Section 10.2.2; Figure 10.2 2). As seen in previous assessments, recruitment over 
the first 10-15 years is estimated with much less certainty and this is the reason why these were 
not included in the estimation of the SRR parameters. Further, as noted in Section 5.1, the last 
six recruitment deviates were not estimated and set to zero. This was because the retrospective 
analysis showed that these were poorly estimated (Section 10.2.1). We reiterate that this will 
have no impact the spawning potential reference points as these cohorts do not contribute to 
SBlatest or SBcurrent, and minimal impact on Fcurrent/FMSY as we already ignore F estimates from the 
terminal year. 

The estimated distribution of recruitment across regions should be interpreted with 
caution as MULTIFAN-CL can use a combination of movement and regional recruitment to 
distribute the population in a way that optimises the objective function. Generally the regional 
recruitment patterns are similar to those from the 2011 assessment. The large recruitments 
early in the time series for regions 1 and 2 persist – presumably driven by the longline CPUE 
trends (CPUE in these regions is the same as used in the previous assessment). The strong 
increase over time seen previously in region three is much less pronounced, even when 
recruitment is combined across regions 3, 7, and 8.  

6.3.2 Biomass 

Trends in biomass are represented using the estimated spawning potential, although 
some key total biomass reference points are included in the results tables. 

The estimated spawning potential trajectory for each region and for the entire WCPO for 
the reference case are shown in Figure 26 and Figure 27. Consistent with the recruitment 
patterns, spawning potential at the start of the model is estimated to be higher than that 
estimated for previous assessments (Section 10.2.2; Figure 10.2 2). The eastern equatorial 
region (region 4) remains the region with the greatest spawning potential and the northeastern 
region (region 2) is the second most important. The western equatorial regions combined (3, 7, 
and 8), while important in the early years of the model, comprise about the same spawning 
potential as region 2 by the end of the model.   

WCPO spawning potential is estimated to have been relatively stable during the 1950s, 
declined rather rapidly through to the mid 1970s and has been undergoing a slow continual 
decline since. WCPO patterns in spawning potential are likely to be more reliable than regional 
recruitment trends, which are primarily driven by the standardised CPUE assumed for the 
region. WCPO patterns in spawning potential are similar to the previous assessment, and key 
differences are in the nature and time of the initial decline and the trend in recent years. Over 
the last 10-15 years spawning potential in the northern regions is estimated to have been flat to 
slightly increasing while declines are estimated to be continuing in the other model regions.  

6.3.3  Fishing mortality 

Average fishing mortality rates for adult age-classes increase throughout the time series 
while juvenile mortality increases strongly through to the late 1990s and has been relatively 
stable since.  Levels of juvenile mortality are greater than those for adults (Figure 28). 

Changes in fishing mortality-at-age and population age structure are shown for decadal 
time intervals in Figure 29. Since the 1980s, the increase of juvenile fishing mortality to the 
current high levels is due to the catches of small fish beginning at that time from both associated 
purse seine sets and the mixed small-fish fisheries in the Philippines and Indonesia. Fishing 
mortality on intermediate ages (12-20 quarters) is also increasing through time consistent with 
the increased fishing mortality from the longline fishery.  

6.3.4 Fishery impact 

We measure fishery impact at each time step as the ratio of the estimated spawning 
potential to that which would have occurred in the historical absence of fishing. This is a useful 
variable to monitor, as it can be computed both at the region level and for the WCPO as a whole. 
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This information is plotted in two ways, first the fished and unfished spawning potential 
trajectories (Figure 30) and second as the depletion ratios themselves (Figure 31). The latter is 
relevant for the agreed limit reference point and discussed in more detail in Section 6.4.1. 

The previous assessment suggested that recent unfished spawning potential was much 
greater than that in the early 1950s, but in the current assessment these are similar. The 
unfished trends should illustrate the impact of regional recruitment on local biomass, but again 
must be considered in the context of the potential confounding between regional recruitment 
and movement. The analysis suggests that the declines in spawning potential in regions 2 and 6 
are being driven primarily by the estimated recruitment, while fishery impacts are greatest in 
regions 3, 4, 7, and 8. As seen in previous assessments, the model estimates moderate initial 
depletion in the northwest region in the 1950s. This could be real or reflect regional growth 
differences (see Section 2.2). 

It is also possible to ascribe the fishery impact to specific fishery components in order to 
see which types of fishing activity have the largest impact on the spawning potential (Figure 
32). The early impacts on the population were primarily attributable to longline fishing, but in 
recent years, at the WCPO level the impacts of associated purse seine sets and longline fishing 
are similar. In areas where they operate, fisheries that catch small fish have a significant impact, 
and the impact of these fisheries can also be seen in areas in which they do not operate, but at a 
much lower level (e.g., purse seine fishery impacts in regions 2, 5, and 6). 

6.3.5 Yield analysis 

The yield analyses conducted in this assessment incorporate the SRR (Figure 33) into 
the equilibrium biomass and yield computations. Importantly in the reference case model the 
steepness of the SRR was fixed at 0.8, so only the scaling parameter was estimated. 

The equilibrium unfished spawning potential was estimated at 1,207,000 mt and the 
spawning potential that would support the MSY was estimated to be 345,400 or 28.6% of SB0. 
The total equilibrium unfished biomass was estimated to be 2,286,000 mt. 

The yield analysis also enables an assessment of the MSY level that would be 
theoretically achievable under the different patterns of age-specific fishing mortality observed 
through the history of the fishery (Figure 35). Prior to 1970, the WCPO bigeye fishery was 
almost exclusively conducted using longlines, with a low exploitation of small bigeye. The 
associated age-specific selectivity resulted in a substantially higher level of MSY (>200,000 mt 
per annum) compared to that estimated for the fishery based on the recent age-specific fishing 
mortality pattern (about 110,000 mt). The decline in the MSY over time follows the increased 
development of those fisheries that catch younger bigeye, principally the small-fish fisheries in 
the far west (Figure 35). 

6.4 Stock status 

6.4.1 Stock status based on the traditional Kobe plot 

For continuity with previous practice, and while the SC and WCPFC consider the use of 
target and limit reference points, we have included the traditional Kobe plot for spawning 
potential versus fishing mortality (Figure 36). We have included both SBcurrent and SBlatest for 
reference on this figure. SBcurrent (2008-11 average) and SBlatest (2012) are estimated to be 94% 
and 77% respectively of SBMSY. 

As noted in Section 6.3.3, fishing mortality has generally been increasing through time, 
and for the reference case Fcurrent (2008-11 average) is estimated to be 1.57 times the fishing 
mortality that will support the MSY (Table 7).  
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6.4.2 Spawning biomass in relation to limit reference point 

The SBF=0 calculated for the period 2002-11 is the basis for the limit reference point 
and this is a spawning potential of 1,613,855 mt which is 33.7% higher than SB0 (Table 7). This 
indicates that recruitment has been generally above the estimated spawner recruitment curve 
during this more recent period. The limit reference point is 20% SBF=0 and this is a spawning 
potential of 322,771 mt. SBcurrent (2008-11 average) and SBlatest (2012) are estimated to be 20% 
and 16% respectively of SBF=0 (Figure 37).  

6.4.3 Spawning biomass in relation to potential target reference points 

There are currently no agreed biomass-related target reference points for any species, 
but the WCPFC has requested investigation of spawning potential in the range of 40-60% SBF=0 
for skipjack for potential biomass-related target reference points. As SBcurrent (2008-11 average) 
and SBlatest (2012) are estimated to be 20% and 16% respectively of SBF=0, these levels are well 
outside (below) the range of those candidate biomass-related target reference points currently 
under consideration for skipjack tuna. 

6.5 Sensitivity of the reference case 

6.5.1 Impact of key model developments  

Detailed results of the stepwise changes are provided in Section 10.3, which can be 
found in the Annex.  

The use of the new MULTIFAN-CL executable had minimal impact on the 2011 
assessment, far less than for skipjack and yellowfin tuna and this is likely due to the lesser 
amounts of tagging data in the bigeye assessment compared to the others. The addition of new 
data and the inclusion of the bias correction factor had a significant impact on MSY, but as seen 
in Section 10.4, this is mostly driven by the bias correction and confirmed by the minimal 
change in absolute levels of recruitment and spawning potential. One important observation is 
that the terminal recruitment deviate which was very low in the 2011 assessment was 
estimated to be much closer to average with the updated data. This confirms the conclusion 
from the retrospective analysis to not estimate terminal recruitment deviates. 

By necessity, the move to the nine region model required numerous changes to model 
structure and assumptions, and in the stepwise model “New regions-JP” we also implemented 
the fixing of the terminal recruitment deviates and exclusion of the early deviates from the SRR 
(see Section 10.4). These changes resulted in a lifting of the absolute levels of recruitment and 
spawning potential across the temporal domain of the model, but especially for the first half of 
the model. This is important as one of the key concerns with previous assessments has been the 
much lower recruitment during the first half of the model domain, and this was greatly reduced 
when moving to the nine-region model and making other model improvements. MSY estimates 
were further increased in this model, but overall stock status was generally similar to earlier 
runs. This model was not considered valid though as region 3 CPUE was being used for regions 
3, 7, and 8. 

The shift to the all-flags CPUE did not go smoothly – it lead to very high recruitment (and 
thus spawning potential) in the early years of the model. Spawning potential in the 1950s was 
10-12 times the SBMSY level and 3-4 times SB0. MSY was slightly higher, but stock status was 
much worse in terms of both SBlatest/SBF=0 and Fcurrent/FMSY. The extremely non-equilibrium 
conditions were attributed to the steep decline in the all-flags region 4 CPUE series (McKechnie 
et al., 2014b). Once this series was swapped with the Japanese series, the model returned to a 
condition more similar to that with all Japan CPUE. This reference case, which replaced the 
previous model after the likelihood profile exercise, had similar model outputs. 
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6.5.2 One-off changes from the structural uncertainty analysis 

Comparisons of the recruitment and spawning potential trajectories for the reference 
case and one-change sensitivity runs from the structural uncertainty analysis are provided in 
Figure 39, the key reference points and likelihood components are compared in Table 7 and 
Table 8, and Kobe plots are provided in Figure 40 and Figure 41. In addition, we compare 
Fcurrent/FMSY for the period 2001 and 2011 for the same suite of models (Table 9). We summarise 
results for each sensitivity axis. 

Size and maximum age (L2) 

Stock productivity as estimated by MSY and general stock status indicators worsened 
with increased L2, but the differences were not particularly large, e.g., range for Fcurrent/FMSY was 
1.53 – 1.63 and the range for SBlatest/SBF=0 was 0.15 – 0.17. Overall model fit improved with 
increasing L2, mostly through improvements to the fit to the length and weight frequency data 
and at the expense of the fit to the tagging data.  

Weight to the size data (SZ_dw) 

Down-weighting the size data had little impact in the current assessment. Spawning 
potential over the first 25 years of the model was lower than the reference case, but MSY was 
only very slightly lower and the key reference points were often identical. The reduced impact 
compared to previous assessments is possibly a consequence of both the reduced volume of size 
frequency data used in the assessment (e.g., using either length or weight data not both) and 
reduced conflict between the size and other data sets due to better preparation and modelling 
of these data (e.g., changes to fishery definitions). 

Steepness (h) 

Following the bigeye review recommendation to reduce the penalty on the spawner 
recruitment curve fitting, the assumed value of steepness had almost no impact on the 
estimated recruitment and spawning potential trajectories. However, steepness does impact on 
the MSY-related quantities. 

The steepness sensitivities provided the most pessimistic (h=0.65) and optimistic 
(h=0.95) results in terms of MSY (101,880 mt versus 116,240 mt) and stock status. The impact 
of steepness on stock status based on the SBlatest/SBF=0 (0.14 versus 0.18) reference point was 
much less than it was on the MSY quantities (Fcurrent/FMSY equal to 1.95 versus 1.27; and 
SBlatest/SBMSY equal to 0.62 versus 0.96). 

Natural mortality (M) 

The estimation of natural mortality required the estimation of a further 41 parameters 
(though they were constrained in various ways) with an improvement to the overall fit of 25 
likelihood points. Improved fits to the size composition and tagging data was partially offset by 
the additional penalties added in the M-estimation process. The level and age-specific pattern of 
the estimated M in fact compare quite well with the fixed values used in the reference case 
(Figure 9).  

When M was estimated the spawning potential of the population was lower in absolute 
terms and recruitment was generally higher, but aside from a small reduction in MSY, the stock 
status indicators were almost identical.  

Tag mixing 

Two distinct tag mixing scenarios were examined – the first comparing tag mixing of one 
quarter instead of two, and the second set the tag mixing for Coral Sea tag releases to 28 
quarters to essentially remove the impact of the recaptures from these releases on the overall 
model fit. The model was quite sensitive to these alternatives.  
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Tag mixing of one quarter had minimal impact on MSY, but did lead to more pessimistic 
stock status indicators (Fcurrent/FMSY equal to 1.73 versus 1.57 for the reference case and 
SBlatest/SBF=0 equal to 0.14 versus 0.16). This model had lower biomass levels. 

Reducing the impact of the Coral Sea tags also had a minimal impact on MSY, but instead 
led to more optimistic stock status indicators (Fcurrent/FMSY equal to 1.49 versus 1.57 for the 
reference case and SBlatest/SBF=0 equal to 0.18 versus 0.16). This model had higher biomass 
levels. 

6.5.3 Structural uncertainty analysis 

Comparisons of the impacts of different axes of the structural uncertainty analysis are 
shown in two ways, first through a series of Kobe plots which show Fcurrent/FMSY and SBlatest/SBMSY 
with colour coding for each option within the axes (Figure 42), and second through a series of 
box and whisker plots (Figure 43 and Figure 44). Finally the probability of exceeding the key 
reference points across all grid runs, and grid runs using the reference case assumption for 
steepness are provided in Table 10.  

The general patterns for each option within the five axes are the same as described in 
Section 6.5.2 so we do not repeat them again here. The positive (or negative) impacts of the 
different options were found to be somewhat additive, e.g., model runs with more options that 
individually gave better outcomes gave even better outcomes when combined. Considering 
Fcurrent/FMSY, the model with the lowest value (1.17) included steepness of 0.95, L2=178cm, and 
long tag mixing for Coral Sea tag release groups; conversely the model with the highest value 
(2.25) included steepness of 0.65, L2=190cm, tag mixing of one quarter and M was estimated. 

6.5.4 Other sensitivity analyses 

As noted in Section 6.5.1 above, several changes to MULTIFAN-CL assumptions, 
particularly relating to recruitment and the SRR curve were made in the current assessment. In 
order to allow better understanding of the impacts, we ran one-off sensitivity analyses to the 
reference case model and these are described in Section 10.4. In addition we ran a model in 
which we attempted to estimate steepness with a uniform prior over the range 0.2-1. 

As expected, for those model runs relating to the SRR curve (bias correction, exclusion of 
early deviates, and estimation of steepness), there was little or no change to the estimated 
recruitment and spawning potential trajectories. The bias correction and estimation of 
steepness did have a significant impact on the MSY-related quantities. Without bias correction 
the MSY is 16% lower and Fcurrent/FMSY was 3% higher. The estimate of steepness hit the upper 
bound of one, possibly assisted by the exclusion of the early, less certain, but higher 
recruitments from the estimation of the SRR. This run gave a 10% higher MSY and a 25% lower 
Fcurrent/FMSY. 

The impact of the non-estimation of the last six quarterly recruitment deviates was 
somewhat surprising - it lifted the absolute levels of spawner potential and recruitment. We 
believe the impact was large because the terminal recruitment deviates were just so large and 
inconsistent with the rest of the time series. For now we view this development as a positive 
one, but will further examine how this operates in future assessments.  

6.6 Overall stock status conclusions 

Based on the results from the reference case model provided in Sections 6.4.1, 6.4.2, and 
6.4.3 and the consideration of results from other model runs in Section 6.5, we make the 
following conclusions regarding stock status: 

• Current catches exceed MSY; 

• Recent levels of spawning potential are most likely at (based on 2008-11 average) or 
below (based on 2012) the level which will support the MSY; 

• Recent levels of fishing mortality exceed the level that will support the MSY; 
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• Recent levels of spawning potential are most likely at (based on 2008-11 average) or 
below (based on 2012) the limit reference point of 20%SBF=0 agreed by WCPFC; and 

• Recent levels of spawning potential are lower than candidate biomass-related target 
reference points currently under consideration for skipjack tuna, i.e., 40-60% SBF=0. 

7 DISCUSSION AND CONCLUSIONS 

The gap between the 2014 and 2011 assessments is the longest between bigeye 
assessments in the past ten years, and combined with the implementation of many of the 
recommendations from the Independent Review of the 2011 bigeye assessment (Ianelli et al., 
2012), significant changes and improvements have been made to the 2014 assessment. In 
Section 7.1 we will comment on some of the most significant changes to the assessment, and 
some of the similarities. We will also touch briefly on some of the problems encountered or 
areas of uncertainty, but these will be covered in more detail in Sections 7.2 and 7.3. 

7.1 Changes from the 2011 assessment 

As a general introduction, previous assessments have featured very strong non-
stationary behaviour such as very strong recruitment trends and large mismatches between 
equilibrium unfished and non-equilibrium unfished biomass. Through improvements to the 
stock assessment these features are greatly reduced in the current assessment. We believe that 
is the result of reduced data conflict achieved through better model inputs and structural model 
assumptions.  

First we compare the overall stock status conclusions from the 2011 and 2014 
assessments and then there are three general areas of changes to the assessment which we will 
discuss below: spatial and fisheries structure; data inputs; and structural modelling 
assumptions.  

The 2010 and 2011 assessment concluded that the bigeye stock was overfished with 
Fcurrent/FMSY in the order of 1.41-1.46 and that the stock was at or below the newly adopted limit 
reference point. These assessments were also characterised by strongly increasing recruitment 
trajectories over time and a large mismatch between MSY and recent catches. In general the 
conclusions from the 2014 stock assessment are consistent with those from previous 
assessments – especially with respect to the limit reference point. Fcurrent/FMSY is estimated to be 
slightly higher in the 2014 assessment, but aside from 2010, total removals have been relatively 
constant over the past 7-8 years. Therefore an increase in Fcurrent/FMSY is not surprising.  What is 
encouraging is that the recruitment trajectory is far more normal and the difference between 
the estimated MSY and recent catches is much less. 

The biggest change to the 2014 assessment was the subdivision of model regions to 
bring the assessment to a nine region model with 33 fisheries. This was done to achieve several 
recommendations of the bigeye review and other data conflicts that had been observed in the 
2011 assessment. Given the uncertainty and often significant revisions that occur with catch 
statistics from Indonesia, the Philippines, and likely Vietnam in the future, separation of this 
area should help compartmentalise the impact of these changes on the estimated dynamics in 
other regions. This also allowed us to better model the offshore longline fleets which showed 
very strong east-west trends in fish sizes that had been identified as extremely influential (and 
problematic) in previous assessments (Harley et al., 2010; Davies et al., 2011).  

The separation of the region that generally encompasses the Bismark and Solomon Seas 
and adjacent areas was not necessarily done for the benefit of the bigeye assessment. Rather, it 
was done partly in response to the analysis of Hoyle et al. (2013), which found that skipjack 
tagged in this area appeared to mix less than fish tagged in the wider region 3 area, and partly 
because some of the purse seine fleets fishing here have different fishing power to other region 
3 fleets, complicating the analysis of management options. 
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The final change was the introduction of a specific region to cover the area within the 
Coral Sea where feeding aggregations of bigeye and, to a lesser extent, yellowfin were tagged 
and recaptured over a long period of time (Evans et al., 2008). This change, in combination with 
other model improvements, resulted in a greatly improved fit to these tagging data. 

Considerable improvements were made to the size and CPUE inputs in response to the 
independent review. The use of all operational available data lead to a much improved CPUE 
series for region 6 (see the black line in Figure 12 of Davies et al., 2011). New indices were also 
derived for areas 3-8. The use of operational data and clustering methods allowed us to better 
account for changes in targeting than was ever possible with aggregate data, and the use of data 
from multiple fleets allowed better spatial and temporal coverage to overcome the concern of 
declining effort from the Japanese fleet. Notwithstanding these improvements, we were not able 
to create new indices for region 1 and 2 and the index for region 4 was ultimately not used in 
the reference case. We will discuss this further in the sections below. 

Both the longline and purse seine size data were subject to considerable improvements, 
and the principle of using either the length or weight data – not both, and the additional regional 
stratification likely reduced the conflict in these data that had been evident in previous 
assessments. As a result, the sensitivity analysis with the size data down weighted had much 
less impact on the stock assessment outcomes than previously. There were some examples of 
lack of fit to size data, such as the poor fit to size data from the purse seine fisheries, which we 
will discuss in the following sections. 

Following the detailed evaluation of the tagging data and modelling requirements by 
Hoyle et al. (2013), considerable effort was directed at all aspects of the tagging data from the 
initial data selection criteria to the reporting rate priors. This work will need to continue, 
particularly for bigeye tuna, as the Central Pacific tagging activities continue and plans are made 
towards a Pacific-wide stock assessment. 

Four major structural modelling changes were made with respect to recruitment and 
the SRR in the current assessment, though only two reflect recommendations from the 
independent review and the other two relate to issues that became apparent during the 
assessment. The application of the lognormal bias correction to the estimate of the SRR led to an 
increase in MSY and a slight decrease in Fcurrent/FMSY, but because it also increases the estimate of 
SB0, stock status in relation to SBMSY is worse. We also reduced the weight on fitting the SRR as 
recommended by the reviewers, and this is why the estimated recruitment and spawning 
potential trends do not differ across the assumed values of steepness. The estimation of very 
large terminal recruitment deviates in early model runs, with no single obvious data driving 
them, combined with the results of the retrospective analyses led to us not estimating 
recruitment deviates for the last six quarters. Not estimating recruitment deviates when data 
are deficient, such as with terminal recruitment deviates, is a practice sometimes used in New 
Zealand stock assessments (N. Davies pers. comm.). We consider this a good general 
development as it will reduce the impact that such poorly estimated recruitments have on 
projections – we already exclude fishing mortality estimates during the final year from the MSY 
calculations. We note that in the 2011 assessment, the retrospective analyses showed clearly 
that the extremely low recruitment estimated for the final year was revised upwards with 
additional years data.  

7.2 Sources of uncertainty 

In this section we comment on some of the difficulties encountered in the assessment or 
issues that arose in the modelling which led to potential uncertainty. This will include 
discussion of some of the factors that were included in the uncertainty framework used in the 
assessment, i.e., sensitivity analyses and the structural uncertainty analysis (grid). 

Due to delays in the finalization of data from the most recent year, the three tropical 
tuna assessments used data up until 2012 instead of 2013 as would normally be the practice. 
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For such short lived species such as tunas, this can lead to a mismatch between information on 
stock status from the assessment, management actions, and the actual stock status on the water. 
This year the 2013 data were only ‘finalized’ at the end of the first week of July and is expected 
to be subject to revision after SC10 (P. Williams pers. comm.). Purse seine catch estimates, 
which depend on observer data, are also impacted by incomplete data and subject to revision. It 
is important to note that the longline data used for the final year of the 2011 assessments were 
subsequently revised considerably, but the assessments, with incorrect data, had to be used for 
evaluation of management options.  

In the Section below we will make a recommendation regarding the importance of some 
of the ‘electronic’ or E-reporting initiatives currently underway in the region, but here we talk 
about how we have used the results from retrospective analyses to come up with a better 
reference point for spawning potential depletion. Previous assessments typically used the 
estimate of spawning potential for the ‘current’ period which excludes the most recent year, and 
takes the average of the four years before that, e.g., in this assessment current is 2008-11. While 
this approach might be suitable for fishing mortality, especially where it can change from year 
to year with the mix of FAD and free school sets, it is not as sensible for spawning potential 
depletion, which retrospective analyses demonstrate is generally well estimated in the final 
year of the assessment. For bigeye tuna, recent recruitments do not contribute to spawning 
potential in the terminal year so we define SBlatest as the final year of the model (i.e., 2012). For 
skipjack tuna, the low age and maturity means that spawning potential the final year of the 
model is less well estimated so the penultimate year should be used (i.e., 2011). Therefore, we 
recommend that conclusions on stock status be based on this Fcurrent/FMSY  and SBlatest/SBF=0. 

While we believe that many of the data conflicts have been reduced in the current 
assessment, the use of likelihood profiling uncovered the presence of local minima in what is 
likely a complex solution surface. While it was reassuring that these different parts of the 
parameter space (with different growth and movement patterns) gave very similar stock status 
outcomes (e.g., see similarities between the penultimate stepwise run in Table 10.3 2 and the 
three L2 model runs in Table 7), it did highlight uncertainty in growth, regional recruitment 
distributions, and movement. It might not be necessary to solve each of these, but better 
information on one or two will allow better estimation of them all. We provide some 
recommendations in the following section. 

While purse seine CPUE data have not been given much weight in bigeye assessments, 
i.e., we allow a random walk in purse seine catchability, recent changes in reporting have the 
potential to impact estimates of catchability and the evaluation of management options. Further, 
such changes in reporting are a hindrance to the potential increased use of purse seine CPUE as 
was done in the 2014 yellowfin and skipjack assessments (Davies et al. 2014; Rice et al. 2014; 
Pilling et al. 2014b). 

One notable ‘lack of fit’ in the 2014 and preceding assessments, has been small fish from 
the purse seine fishery. This was the focus of considerable investigation in the current 
assessment with over 50 combinations of selectivity options considered over a period of three 
weeks. We examined age and length-based selectivity, increasing the number of nodes on those 
fisheries that used splines, and even examined estimating selectivity-at-age as free parameters. 
While many of these developments greatly improved the fit to these data, they were all 
associated with implausible growth estimates, in particular the estimate of L2 would often 
approach the upper bound of 200 cm and the estimated variation in length at age (the spread 
around the growth curve – see Figure 20) would go to the lower band. This requires further 
investigation, in conjunction with efforts to improve growth estimates, and is included as a 
recommendation for further work. 

Longline CPUE data remain one of the most important drivers of the bigeye stock 
assessment and while considerable progress has been made in the 2014 assessment, the impact 
of the all-flags CPUE for region 4 serves as a reminder of the importance of continued work. For 
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regions 3, 5, 7, and 8, we were able to address the two key CPUE recommendations of the 
independent review through the use of all the operational data available to SPC. We express our 
appreciation to Chinese Taipei for the collaboration that allowed the integration of their data 
into our all-flags analyses for regions 4 and 6. The demonstrated importance of combining data 
across fleets emphasises the need for a collaborative approach in the future and we provide 
some specific recommendations below. 

The current assessment had the greatest update of tagging data in many years and the 
limited sensitivity analyses demonstrated that key model outputs are sensitive to tagging data 
assumptions such as the assumed mixing period. At the same time these data allowed the 
estimation of natural mortality and providing ‘absolute abundance’ scaling information to go 
with the ‘relative abundance’ information provided by longline CPUE.  

Finally, one area of reduced uncertainty in the current assessment has been impact of 
steepness on the spawning potential reference point. The previously used reference point of 
SB/SBMSY was extremely sensitive to the assumed value of steepness, but the new limit reference 
point 20%SBF=0, is far less sensitive to this (Table 7). There is however a new issue to be 
addressed, which is how to present stock status information in the light of the newly adopted 
limit reference point. The terms “overfished” and “overfishing” are also open to reconsideration, 
as is the Kobe plot. We see this as an important task for the SC in determining how best to 
communicate stock assessment results to the Commission. This issue was first raised at MOW2 
in the paper also submitted to SC10 (McDonald 2014) and we attempt to further stimulate 
discussion on this issue with our new figure provided as Figure 38.    

7.3 Recommendations for further work 

As discussed in the sections above, there are areas of uncertainty in the current 
assessment, and many of these can be addressed by further work. This section outlines some 
recommendations, some directed at those undertaking future assessments, and some at the SC 
and WCPFC itself.   

WCPFC-specific recommendations 

• WCPFC continue the evaluation of E-reporting initiatives for both logbook and observer 
data and implement these with urgency where it is found to be practical and cost-effective. 
This will allow stock assessments to be undertaken with up to date data; 

• WCPFC should consider the potential impacts of changes in purse seine effort reporting by 
some fleets on: stock assessments, evaluation of management measures, and the ability of 
management measures to achieve their desired outcomes. 

• WCPFC should consider the demonstrated importance of combining operational longline 
logsheet data across fleets to improve key stock assessment inputs and determine how 
operational data for key fleets, currently not available for such analyses, can be included in 
the future. 

Biological studies 

• Conduct direct ageing of available collections of bigeye tuna otoliths, and those of other 
tropical tunas if possible, so that these data can be included in the stock assessments. 
Examine regional patterns in growth where samples are sufficient. 

• Apply the approach of Aires-da-Silva et al. (2014) to available tag-recapture and direct 
ageing data for bigeye in the WCPO and potentially integrate this into MULTIFAN-CL. 

• Continued tagging across the range of the stock (associated with tag seeding work where 
necessary) to support the ability of tagging data to improve estimates of growth, natural 
mortality, movement, and fishing mortality. Analyses of these data to inform mixing periods 
and spatial structure should continue. 

MULTIFAN-CL/Modelling 
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• Examine the potential for orthogonal recruitment structure to reduce the number of 
recruitment parameters estimated to simplify the objective function solution surface. 

• Further investigate selectivity functional forms, including length-based selectivity for purse 
seine and other small-fish fisheries. Careful examination will be required of impacts on 
growth estimates and this work may not be possible until improved data are available for 
growth estimation.  

• Likelihood profiling on the population scaling parameter and other important model 
quantities, e.g., L2, should be routine in all assessments (Lee et al. 2014). 

• Future assessments should consider a wider range of uncertainty around the tagging data 
including reporting rates, data weighting, and mixing periods. 

Longline CPUE 

• Continue the analysis of operational data – combining fleets to maximize spatial and 
temporal coverage and clustering and other methods to account for changes in targeting 
over time.  

• Develop an operating model that can include changes in the distribution in fishing effort and 
targeting shifts and examine the ability of current approaches to successfully address these 
issues. 

• Review the recommendations of Hoyle et al. (2014a; 2014b) in the future development and 
presentation of CPUE analysis. 

Longline size data 

• Further examination of the size frequency samples from the ‘mixed-fleet’ longline fisheries 
to see if it is also possible to introduce spatially-based catch weighting in addition to flag-
based catch weighting.  

Reference points 

• SC should consider the best way to summarise and present information on stock status in 
the light of the adoption of a limit reference point and steps towards target reference points 
and eventually harvest control rules. This will involve a dialogue with the Commission. 

7.4 Main assessment conclusions 

The main conclusions of the 2014 assessment are as follows. 

1. The new regional structure and modelling and data improvements appear to have 
improved the current assessment with the previously observed increasing trend in 
recruitment much reduced and fit to Coral Sea tagging data greatly improved.  

2. Nevertheless there is some confounding between estimated growth, regional 
recruitment distributions, and movement which, while having minimal impact of stock 
status conclusions, lead to a complex solution surface and the presence of local minima.  

3. Current catches exceed MSY; 

4. Recent levels of spawning potential are most likely at (based on 2008-11 average) or 
below (based on 2012) the level which will support the MSY; 

5. Recent levels of fishing mortality exceed the level that will support the MSY; 

6. Recent levels of spawning potential are most likely at (based on 2008-11 average) or 
below (based on 2012) the limit reference point of 20%SBF=0 agreed by WCPFC; and 

7. Recent levels of spawning potential are lower than candidate biomass-related target 
reference points currently under consideration for skipjack tuna, i.e., 40-60% SBF=0. 

8. These conclusions are similar to those obtained in 2010 and 2011 assessments. 
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9. Stock status conclusions are sensitive to alternative assumptions regarding the 
modelling of tagging data, and the longline CPUE series included, identifying tagging and 
longline CPUE analyses as important areas for continued research. 
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Table 1.  Definition of fisheries for the nine-region MULTIFAN-CL analysis of WCPO bigeye tuna. 

Fishery  Nationality Gear Region 

 1.  L ALL 1 All Longline 1 

 2. L ALL 2 All, except US Longline 2 

 3. L US 2 United States Longline 2 

 4. L All 3 All, except CT-Offshore, CN, FSM, 

MH, PH, ID, and PW  
Longline 3 

 5. L OS-E 3 Eastern LL region 3: CT-Offshore, CN, 

FSM, MH, PH, PW, and ID  
Longline 3 

 6. L OS-W 7 Western LL region 7: CT-Offshore, 

CN, FSM, MH, PH, PW, VN, and ID  
Longline 7 

 7. L All 7 All, except CT-Offshore, CN, FSM, 
MH, PH, ID, and PW 

Longline 7 

 8. L All 8 All Longline 8 

 9. L All 4 All, except US Longline 4 

 10. L US 4 United States Longline 4 

 11. L AU 5 Australia Longline 5 

 12. L All 5 All excl. Australia Longline 5 

 13. L All 6 All Longline 6 

 14. S-ASS All 3 All, except ID and PH dom Purse seine, log/FAD sets 3 

 15. S-UNS All 3 All, except ID and PH dom Purse seine, school sets 3 

 16. S-ASS All 4 All Purse seine, log/FAD sets 4 

 17. S-UNS All 4 All Purse seine, school sets 4 

 18. Misc PH 7 Philippines Miscellaneous (small fish), including purse seine 
within PH archipelagic waters. 

7 

 19. HL ID-PH 7 Philippines, Indonesia Handline (large fish) 7 

 20. S JP 1 Japan Purse seine, all sets 1 

 21. P JP 1 Japan Pole-and-line 1 

 22. P All 3 All, except Indonesia Pole-and-line 3 

 23. P All 8  All Pole-and-line 8 

 24. Misc ID 7 Indonesia Miscellaneous (small fish), including purse seine 
within ID archipelagic waters. 

7 

 25. S PHID 7 Philippines and Indonesia Offshore purse seine in waters east of about 125°E 
(and outside of PH and ID archipelagic waters). 

7 

 26. S-ASS All 8 All Purse seine, log/FAD sets 8 

 27. S-UNS All 8 All Purse seine, school sets 8 

 28. L AU 9 Australia Longline 9 

 29. P All 7 All Pole-and-line 7 

 30. L All 9 All Longline 9 

 31. S-ASS All 7 All, except ID and PH dom Purse seine, log/FAD sets 7 

 32. S-UNS All 7 All, except ID and PH dom Purse seine, school sets 7 

 33. Misc VN 7 VN Miscellaneous including purse seine and gillnet 
within VN waters 

7 
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Table 2. Number of tagged fish released and recaptured by program, release group, region, and time 
period input to the assessment. 

Prog Coral Sea PTTP RTTP 

Years 1991-2001 2006-2012 1989-1992 

Region Groups Releases Recaptures Groups Releases Recaptures Groups Releases Recaptures 

1 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 

3 0 0 0 10 1238.45 354 5 292.89 65 

4 0 0 0 6 4534.11 2056 3 907.98 107 

5 0 0 0 1 28.66 7 1 131.84 4 

6 0 0 0 0 0 0 0 0 0 

7 1 277.11 102 3 384.2 116 4 940.96 268 

8 0 0 0 12 1742.16 755 5 530.66 48 

9 5 4235.54 337 0 0 0 0 0 0 

Total 6 4512.65 439 32 7927.58 3288 18 2804.33 492 
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Table 3: Summary of the major changes from the 2011 reference case to the 2014 reference case.  

Component 2011 assessment 

(Run3j – Ref.case) 

2014 assessment 

(037_L0W0T0M0H0) 

Regional structure Six regions Nine regions with two new regions added 
to the western equatorial region and one 
to the south western region. 

Fishery structure 26 fisheries 33 fisheries and the first inclusion of 
some Japanese and Vietnamese coastal 
fishery catches 

Longline CPUE Operational indices 
based on Japanese 
logsheet data. 

Operational CPUE indices based on either 
Japanese logsheet data, or all operational 
data (combined flags) available to SPC.  

Longline size data All available data. 
Japanese data 
spatially weighted by 
CPUE 

Either weight or length used for fisheries 
depending on quality and coverage. Japan 
data and all fleets data for some fisheries 
weighted spatially by catch.  

Purse seine size data Selectivity bias 
corrected observer 
samples 

Selectivity bias-corrected observer 
samples plus Pago Pago port sampling 
data. All weighted by set catch. 

Recruitment and spawner 
recruitment relationship 

All deviates 
estimated and 
moderate constraint 
on fitting the SRR 
curve 

Terminal six recruitment deviates not 
estimated and these and the first 40 
recruitment deviates (first 10 years) not 
included in the estimation of the SRR. 
Lognormal bias correction applied to the 
SRR and low penalty on fitting the SRR. 

Growth Estimated Length at the maximum age (L2) fixed at 
184 cm. 
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Table 4: Summary of the groupings of fisheries within the assessment for selectivity curve, catchability 
(used for the implementation of regional weights), tag recaptures (typically for purse seine fisheries 
within a region), and tag reporting rates. Note for the last, for some fishery groups different reporting 
rates were estimated for different tag release programmes. See Table 1 for further details on each fishery. 

Fishery  Region Selectivity Catchability Tag 
recaptures 

Tag reporting 

 1.  L ALL 1 1 1 1 1 1 

 2. L ALL 2 2 1 1 2 1 

 3. L US 2 2 2 2 3 2 

 4. L All 3 3 3 1 4 1 

 5. L OS-E 3 3 4 3 5 1 

 6. L OS-W 7 7 5 4 6 1 

 7. L All 7 7 6 1 7 1 

 8. L All 8 8 7 1 8 1 

 9. L All 4 4 3 1 9 1 

 10. L US 4 4 2 5 10 2 

 11. L AU 5 5 8 6 11 3 

 12. L All 5 5 3 1 12 4 

 13. L All 6 6 3 1 13 1 

 14. S-ASS All 3 3 9 7 14 5 

 15. S-UNS All 3 3 11 8 14 5 

 16. S-ASS All 4 4 10 9 15 6 

 17. S-UNS All 4 4 15 10 15 6 

 18. Misc PH 7 7 12 11 16 7 

 19. HL ID-PH 7 7 13 12 17 8 

 20. S JP 1 1 14 13 18 9 

 21. P JP 1 1 14 14 19 10 

 22. P All 3 3 14 15 20 11 

 23. P All 8  8 14 16 20 12 

 24. Misc ID 7 7 12 17 21 13 

 25. S PHID 7 7 9 18 22 14 

 26. S-ASS All 8 8 9 19 23 15 

 27. S-UNS All 8 8 11 20 23 15 

 28. L AU 9 9 8 21 24 16 

 29. P All 7 7 12 22 25 17 

 30. L All 9 9 3 1 26 18 

 31. S-ASS All 7 7 9 23 27 5 

 32. S-UNS All 7 7 11 24 27 5 

 33. Misc VN 7 7 12 25 28 19 
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Table 5: Summary of the reference case model and one-off sensitivities to the reference case, which were 
also included in the grid. 

Run Name Description 

037_L0W0T0M0H0  Ref.Case JP CPUE for regions 1,2, and 4, all flags for regions 3, 7, 8, 5, and 6, and 
nominal for region 9. Size data weighted as nsample/20, steepness 
fixed at 0.8, M fixed, and the mean length of fish in the oldest age class 
(L2) fixed at 184 cm. 

001_L1W0T0M0H0 L2_178 the mean length of fish in the oldest age class (L2) fixed at 178 cm 

073_L2W0T0M0H0 L2_190 the mean length of fish in the oldest age class (L2) fixed at 190 cm 

038_L0W0T0M0H1 h_0.65 Steepness=0.65. 

039_L0W0T0M0H2 h_0.95 Steepness=0.95. 

043_L0W0T1M0H0 Mix_1 Tag mixing period=1 quarter 

049_L0W0T2M0H0 Mix_CS Mixing period for Coral Sea releases increased to 28 quarters 

055_L0W1T0M0H0 SZ_dw Down weight the relative influence of the size data - nsample/50. 

040_L0W0T0M1H0 M_est Estimate age-specific natural mortality schedule. 

 

 

Table 6: Description of symbols used in the yield analysis. For the purpose of this assessment, ‘current’ is 
the average over the period 2008-2011 and ‘latest’ is 2012. 

Symbol     Description 

������� Catch in the latest year 

��	

���  Average fishing mortality-at-age3 for a recent period 

��
�  Fishing mortality-at-age producing the maximum sustainable yield (MSY4) 

��� Equilibrium yield at ��
�  

�������/��� Catch in the most recent year relative to MSY 

��	

���/��
� Average fishing mortality-at-age for a recent period relative to ��
�  

�� Equilibrium unexploited total biomass 

��	

���  Average annual total biomass over a recent period 

��� Equilibrium unexploited spawning potential.  

�������� Spawning potential in the latest time period 

����� 
Average spawning potential predicted to occur in the absence of fishing for the 
period 2002-11 

���
�  Spawning potential that which will produce the maximum sustainable yield (MSY)  

��������/����� 
Spawning potential in the latest time period relative to the average spawning 
potential predicted to occur in the absence of fishing for the period 2002-11 

��������/���
�  
Spawning potential in the latest time period relative to that which will produce the 
maximum sustainable yield (MSY) 

 

  

                                                             

3 This age-specific pattern is dependent on both the amount of fishing and the mix of fishing gears, e.g. 
relative catches of small and large fish 

4 MSY and other MSY-related quantities are linked to a particular fishing pattern and the MSY will change, 
for example, based on changes in the relative catches of small and large fish 
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Table 7:  Estimates of management quantities for the reference case, one change sensitivity runs and the 
quantiles from the structural uncertainty analysis (grid). ‘Current’ is the average over the period 2008-
2011 and ‘latest’ is 2012. 

 

 
Ref.case L2=178cm L2=190cm h=0.65 h=0.95 M_est Mix_1qtr 

���(mt) 108,520  109,200  107,120  101,880  116,240  107,400  107,880  

�������/��� 1.45  1.45  1.47  1.55  1.36  1.47  1.45  

��	

���/��
� 1.57  1.53  1.63  1.95  1.27  1.57  1.73  

�� 2,286,000  2,259,000  2,244,000  2,497,000  2,166,000  2,049,000  2,183,000  

��	

���  742,967  754,713  700,360  744,596  741,549  673,199  640,645  

��� 1,207,000  1,180,000  1,209,000  1,318,000  1,143,000  1,056,000  1,153,000  

���
� 345,400  338,300  346,600  429,900  275,200  294,400  328,700  

����� 1,613,855  1,553,489  1,654,017  1,848,385  1,483,216  1,415,672  1,585,331  

���	

  325,063  331,447  305,803  326,007  324,283  279,409  269,820  

�������� 265,599  267,649  255,775  266,290  264,937  224,371  218,679  

���	

/����� 0.20  0.21  0.18  0.18  0.22  0.20  0.17  

��������/����� 0.16  0.17  0.15  0.14  0.18  0.16  0.14  

���	

/���
� 0.94  0.98  0.88  0.76  1.18  0.95  0.82  

��������/���
� 0.77  0.79  0.74  0.62  0.96  0.76  0.67  

 

Table 7 cont.  

 
 Ref.case Mix_CS SZ_dw Grid median Grid 5%ile Grid 95%ile 

���(mt)      108,520  109,480  107,960  107,580  100,988  116,812  

�������/���       1.45  1.44  1.47  1.47  1.35  1.57  

��	

���/��
�      1.57  1.49  1.57  1.61  1.22  2.14  

�� 2,286,000  2,362,000  2,245,000  2,239,500  1,919,500  2,543,350  

��	

���         742,967  808,387  733,109  696,811  571,589  808,916  

���     1,207,000  1,247,000  1,188,000  1,184,000  1,014,150  1,364,200  

���
�        345,400  357,000  341,200  338,250  231,240  444,490  

����� 1,613,855  1,640,146  1,603,120  1,594,624  1,349,538  1,943,070  

���	

  325,063  361,150  320,676  302,264  236,614  366,379  

�������� 265,599  295,780  265,627  246,063  194,090  296,027  

���	

/����� 0.20  0.22  0.20  0.19  0.14  0.23  

��������/����� 0.16  0.18  0.17  0.15  0.12  0.19  

���	

/���
�  0.94  1.01  0.94  0.90  0.64  1.25  

��������/���
� 0.77  0.83  0.78  0.75  0.53  1.01  

 

  



 48

Table 8. Objective function components for the reference case and one-change sensitivity runs. 

 

Run npars Total Catch Length freq. Weight freq Tag Penalties 

        Ref.Case 8467 -1081859.73 15.78 -174013.96 -914922.94 3913.44 3138.59 

L2_178 8467 -1081841.48 15.72 -174012.47 -914903.86 3895.74 3153.58 

L2_190 8467 -1081928.78 15.89 -174076.19 -914940.57 3923.28 3139.87 

h_65 8467 -1081859.38 15.78 -174014.11 -914922.81 3913.1 3138.91 

h_95 8467 -1081860.04 15.78 -174013.94 -914922.84 3913.02 3138.83 

M_est 8508 -1081884.84 15.81 -174025.28 -914938.58 3896.48 3157.55 

Mix_1 8467 -1081478.78 18.22 -174025.05 -914900.06 4250.99 3167.75 

Mix_CS 8467 -1082164.84 15.65 -174015.61 -914936.49 3635.79 3122.75 

SZ_dw 8467   -909244.42 14.74 -136994.85 -778977.70 3750.99 2953.11 

 

Table 9: Comparison of historical estimates of ��������/��� 	for each year from 2001-2011 and the 
average for the period 2001-04 for the reference case and one-off sensitivity model runs described in 
Table 5. For this analysis we estimated the MSY quantities based on the fishing mortality at age profile for 
that year. 

 

   ��	

���/��
� 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2001-04 

2011 1.28 1.51 1.11 1.65 1.43 1.64 1.33 1.42 1.46   1.39 

Ref.Case 1.24 1.36 1.26 1.56 1.34 1.51 1.28 1.67 1.67 1.33 1.61 1.36 

L2_178 1.19 1.30 1.22 1.50 1.31 1.45 1.24 1.61 1.62 1.30 1.56 1.30 

L2_190 1.30 1.46 1.35 1.63 1.40 1.59 1.35 1.72 1.72 1.38 1.68 1.44 

h_65 1.52 1.69 1.54 1.94 1.66 1.87 1.59 2.06 2.08 1.65 2.01 1.67 

h_95 1.01 1.10 1.04 1.26 1.09 1.23 1.03 1.36 1.36 1.07 1.28 1.10 

M_est 1.20 1.36 1.23 1.54 1.32 1.49 1.27 1.62 1.65 1.34 1.65 1.33 

Mix_1 1.34 1.50 1.34 1.75 1.47 1.67 1.42 1.82 1.85 1.48 1.74 1.48 

Mix_CS 1.16 1.28 1.19 1.47 1.27 1.43 1.21 1.59 1.59 1.26 1.52 1.27 

SZ_dw 1.24 1.42 1.30 1.59 1.37 1.52 1.28 1.65 1.66 1.37 1.58 1.39 

 

 

Table 10. Probability that terminal spawning potential is lower than ". $�%��" and fishing mortality 
exceeds ��� 	based on all model runs undertaken for the structural uncertainty analysis (All grid), and for 
those grid runs with steepness fixed equal to 0.8. 

 

 Structural uncertainty 

 All grid h=0.8 

&'�������� < 0.2�����+ 98% 100% 

&'�_-.//012/�_���	 > 1+ 100% 100% 
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Figure 1.  Regional structure of the reference case model. 

 

 

Figure 2.  Long-distance (>1,000 nmi) displacements of tagged bigeye in the Pacific Ocean from data 
available to SPC. The green arrows are data from the Pacific Tuna Tagging Programme (2008 – 
current). The purple arrows are from earlier SPC tagging in the western Pacific (Regional Tuna 
Tagging Project, 1989-1992), the IATTC in the eastern Pacific and the University of Hawaii in the North 
Pacific around Hawaii. 
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Figure 3.  Presence of catch, standardised CPUE, and length and weight frequency data by year and 
fishery for the reference case model. The different colours refer to purse seine (blue), pole-and-line 
(red), longline (green) and other gears (yellow). 
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Figure 4.  Total annual catch (1000s mt) by fishing gear from the reference case model. 
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Figure 5. Total annual catch (1000s mt) by fishing method and assessment region from the reference 
case model. 
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Figure 6. Catch distribution (2003-2012) by 5 degree squares of latitude and longitude and fishing 
method: longline (blue), purse-seine (green), pole-and-line (red), and other (yellow). Overlayed are 
the regions for the assessment model. 
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Figure 7. GLM standardised catch-per-unit-effort (CPUE) for the principal longline fisheries (L ALL 1−9) 
from the reference case model. Indices are scaled by the respective region scalars. See McKechnie 
(2014b) and McKechnie et al. (2014a) for further details of the CPUE and region scalars. Note: region 9 
CPUE is based on nominal rather than standardised CPUE. 
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Figure 8. Number of weight (red) and length (grey) frequency samples from the reference case model. 
The maximum value is 12444, but note that in the reference case model a maximum sample size of 1000 
is allowed.  
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Figure 9.  Natural mortality-at-age as assumed in the reference case and estimated in the one-change 
sensitivity (top) and % mature (bottom) . Note that the estimate of maturity is actually used to define an 
index of spawning potential incorporating information on sex ratios, maturity at age, fecundity, and 
spawning fraction (see Hoyle and Nicol 2008 for further details). 
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Figure 10. Observed and predicted CPUE for the major longline fisheries for the reference case. 

 



 58

 

 

Figure 11.  Effort deviations by time period for each LL-ALL fishery for the reference case. The dark line 
represents a lowess smoothed fit to the effort deviations. A small number of values lie outside the bounds 
of the plot. 
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Figure 12. Composite (all time periods combined) observed (black histograms) and predicted (red line) 
catch at length for all fisheries with samples for the reference case. 
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Figure 13. Composite (all time periods combined) observed (black histograms) and predicted (red line) 
catch at weight for all fisheries with samples for the reference case. 
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Figure 14. A comparison of the observed (red points) and predicted (grey line) median fish length (FL, 
cm) for all fisheries with samples for the reference case. The confidence intervals represent the values 
encompassed by the 25% and 75% quantiles. Sampling data are aggregated by year and only length 
samples with a minimum of 30 fish per year are plotted. 
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Figure 14 cont. 
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Figure 15. A comparison of the observed (red points) and predicted (grey line) median fish weight (kg) 
for all fisheries with samples for the reference case. The confidence intervals represent the values 
encompassed by the 25% and 75% quantiles. Sampling data are aggregated by year and only length 
samples with a minimum of 30 fish per year are plotted. 
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Figure 15 cont.  
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Figure 16. Predicted and observed recaptures of tagged fish by time period at liberty (quarter) from the 
region of release to the region of recapture. 
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Figure 17. Observed recaptures for the reference case by time period specific to each release program 
shown by coloured dots: green = PTTP, blue = CS, red = RTTP. The model (black line) is fitted to the total 
observed recaptures in a time period (black circles), that are made up of the sum of the program-specific 
recaptures occurring in that time period, hence a dot and circle will coincide if recaptures are derived 
from only one program. 
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Figure 18. Observed and predicted tag attrition for the reference case across all tag release events. 
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Figure 19. Estimated reporting rates for the reference case. Reporting rates can be estimated separately 
for each release program and recapture fishery group (histograms). See text for further details of tagging 
programmes. Certain estimates are grouped over release programs and over recapture fisheries, (e.g. LL-

ALL and HL fisheries). The prior mean ±1.96 SD is also shown for each reporting rate group. 
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Figure 20. Estimated growth for the reference case. The black line represents the estimated mean length 
(FL, cm) at age and the grey area represents the estimated distribution of length at age. For this 
assessment the length of the oldest age class was fixed at 184 cm. 
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Figure 21. Selectivity coefficients by fishery. 
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Figure 22.  Estimated catchability time-series for those fisheries assumed to have random walk in 
catchability. 
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Figure 23. Proportional distribution of total biomass (by weight) in each region apportioned by the 
source region of the fish for the reference case. The colour of the home region is presented below the 
corresponding label on the x-axis. The biomass distributions are calculated based on the long-term 
average distribution of recruitment between regions, estimated movement parameters, and natural 
mortality. Fishing mortality is not taken into account. 
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Figure 24. Estimated quarterly movement coefficients for the reference case. The movement coefficient 
is proportional to the width of the arrow. 
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Figure 25. Estimated annual recruitment (millions) by region and for the WCPO for the reference 
case. The shaded areas indicate the approximate 95% confidence intervals. 
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Figure 26. Estimated annual average spawning potential by region and for the WCPO for the 
reference case. The shaded areas indicate the approximate 95% confidence intervals. 
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Figure 27. Estimated annual average spawning potential by model region for the reference case.  
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Figure 28. Estimated annual average juvenile and adult fishing mortality for the WCPO for the 
reference case. 
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Figure 29. Estimated proportion at age (quarters) for the WCPO bigeye population (left) and 
fishing mortality at age (right) by year at decade intervals for the reference case. 
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Figure 30.  Comparison of the estimated spawning potential trajectories (lower solid black lines) 
with those trajectories that would have occurred in the absence of fishing (upper dashed red lines) 
for each region and for the WCPO for the reference case. 
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Figure 31.  Ratios of exploited to unexploited spawning potential �%�/�%��5"
 for each region and 

the WCPO  for the reference case.  
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Figure 32.  Estimates of reduction in spawning potential due to fishing (fishery impact = 6 − �%�/�%��5"
) 

by region and for the WCPO attributed to various fishery groups for the reference case. 
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Figure 33.  Estimated relationship between recruitment and spawning potential based on quarterly 
(top) and annual (bottom) values for the reference case. 
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Figure 34. Estimated yield as a function of fishing mortality multiplier for the reference case. The red 
dashed line indicates the equilibrium yield at current fishing mortality and the blue dashed line indicates 
the MSY and the change in current fishing mortality required to achieve it. 
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Figure 35. History of the annual estimates of MSY (red line) compared with annual catch split into three 
fishery sectors for the reference case. 
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Figure 36. Temporal trend in annual stock status, relative to SBMSY (x-axis) and FMSY (y-axis) reference 
points, for the period 1952–2011 from the reference case. The colour of the points is graduated from 
mauve to dark purple through time and the points are labelled at 5-year intervals. The white triangle 
represents the average for the current period and the pink circle the latest period as defined in Table 6. 
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Figure 37. Ratio of exploited to unexploited spawning potential, �%�/�%��5"
, for the WCPO for the 

reference case. The current WCPFC limit reference point of 20%SBF=0 is provided for reference as the grey 
dashed line and the red circle represents the level of spawning potential depletion based on the agreed 
method of calculating	�%��" over the last ten years of the model (excluding the last year). 
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Figure 38. For discussion – a potential step towards displaying stock status with target and limit 
reference points. The red zone represents spawning potential levels lower than the agreed limit reference 
point which is marked with the solid black line. The orange region is for fishing mortality greater than 
FMSY (F=FMSY is marked with the black dashed line). The lightly shaded green rectangle covering 0.4-
0.6SBF=0 is the ‘space’ that WCPFC has asked for consideration of a TRP for skipjack. The white triangle 
represents the average for the current period and the pink circle the latest period as defined in Table 6.  
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Figure 39. Estimated average recruitment (top) and spawning potential (bottom) for the WCPO obtained 
from the one-off sensitivity model runs to the reference case (see  Table 5  for details of each scenario).  
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Figure 40. Temporal trend in annual stock status, relative to SBMSY (x-axis) and FMSY (y-axis) reference 
points from the one-off sensitivity model runs to the reference case. 
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Figure 40. cont. 
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Figure 41. Summary of latest stock for the reference case (white) and one-off sensitivity runs from the 
structural uncertainty grid. 
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Figure 42. Plot of �%89��:�/�%��  versus ��������/���  for the 108 model runs undertaken for the 
structural uncertainty analysis. The runs reflecting the reference case assumptions are denoted with 
black circles while the runs with the alternative assumption are denoted with white circles. For the 
steepness panel the labels are as follows: 0.65 (white), 0.95 (grey), and 0.8 (black), and for the tag mixing 
panel they are 2 quarters (black), 1 quarter (grey), and 28 quarters for Coral Sea releases (white). 
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Figure 43. Box plots showing of the effects of the different factors within the structural uncertainty 
analysis grid on ��������/��� .  
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Figure 44. Box plots showing of the effects of the different factors within the structural uncertainty 
analysis grid on �%89��:�/�%��". 
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10 ANNEX 

10.1 Likelihood profile 

To evaluate the information available in the observation data component on the model’s 
estimate of scale, a maximum likelihood profile was calculated over a global scaling parameter 
estimated by the model (“totpop”). The profile reflected the loss of fit over all the data, i.e. the 
overall objective function value, caused by changing the population scale from that of the 
maximum likelihood estimated value. The total population scaling parameter (totpop) of 
MULTIFAN-CL was used to explore the range of population scale because it directly determines 
the level of recruitment and, hence, absolute biomass. The profile entailed fitting a set of models 
over a range of fixed totpop values above and below the maximum likelihood estimate. 

For bigeye tuna this analysis was not undertaken with the reference case model, instead 
it was undertaken with the penultimate model in the stepwise development (“Swap R4 CPUE” – 
see Section 10.3). It was believed that this run would be the reference case model (red circle in 
Figure 10.1 1) until it was discovered that a better fit was found with a higher scaling 
parameters (green circle). The main difference between the two models was the slightly larger 
L2 (184cm vs. 178 cm) associated with the better fit. When the totpop parameter was freed up 
for estimation again (it was fixed in the likelihood profile), totpop declined closer to the 
previous value as the model improved its fit to the CPUE series (purple circle). The other low 
point on the far left (orange circle) was associated with an even larger L2 of 192 cm. This model 
had greatly reduced variation in length at age and was considered far less biologically plausible 
than the other runs and L2 values. 

The difference between the model runs denoted by the red and purple points is 
fortunately very minimal in terms of trajectories and key reference points (see Section 10.3). 
therefore, the decision was made to use the purple point – with L2 fixed at 184cm as the 
reference case, but also include L2’s of 178 cm and 190 cm in the structural uncertainty 
analysis.  

 

 

Figure 10.1 1: Profile of the marginal total negative log-likelihood in respect of the population scaling 
parameter, see text for description of the basis for each of the coloured circles. 

 



 96

10.2 Retrospective analyses 

10.2.1 Removal of recent years from the 2014 assessment 

Retrospective analysis involves rerunning the model by consecutively removing 
successive years of data to estimate model bias (Cadrin and Vaughn, 1997; Cadigan and Farrell, 
2005). Note, the retrospective analyses used a different, but very similar model to the reference 
case with terminal recruitment estimated. 

A series of models were fitted starting with the full dataset (through 2012), followed by 
models with the retrospective removal of all input data for the years 2012, 2011, 2010, 2009, 
and 2008 successively. The models are named below by the final year of data included. In 
addition, a one-off model was run as a variant of the reference case that included the estimation 
of terminal recruitments. A comparison of the recruitment and spawning biomass trajectories is 
shown in Figure 10.2 1. 

 

 

Figure 10.2 1: Recruitment estimates (top) and spawning potential (bottom) from a variant of the 
reference case where terminal recruitments were estimated, and for retrospective analyses for the 
successive removal of data from the end of the observation time series from 2012 to 2008. Model runs are 
denoted by the final year of data. 
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10.2.2 Retrospective examination of previous assessments 

The reference case model for the current (2014) assessment was compared 
retrospectively to those for the past two assessments done in 2011 and 2010. Key management 
quantities for the models are listed in Table 10.2 1, a comparison of the recruitment and 
spawning biomass trajectories is shown in Figure 10.2 2, and a comparison of the Kobe plots of 
estimated stock status relative to the MSY reference points is shown in Figure 10.2 3.  

Table 10.2 1: Key management quantities for the reference case models used for the WCPO bigeye tuna 
stock assessments in 2010, 2011, and the current assessment (2014). 

Management quantity Ref.case-2010 Ref.case-2011 Ref.case-2014 

MSY 73,840 76,760 108,520 

Fcurrent/FMSY 1.41 1.46 1.57 

SBlatest/SBF=0 0.16 0.21 0.16 

 

 

 

Figure 10.2 2: Annual recruitment (top) and spawning biomass (bottom) estimates from the reference 
case models used for the WCPO bigeye assessments from 2010, 2011 and the current assessment (2014). 
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2011 

 

2014 

 

  

 

Figure 10.2 3: Comparison of the estimates of stock status in respect of spawning stock biomass relative 
to SBMSY (top panels) and SBF=0 (bottom panels), where the white triangle represents the average for the 
current period (SBcurrent) and the pink circle the latest period (SBlatest). 
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10.3 Stepwise model developments 

Starting with the reference case model for the 2011 bigeye tuna stock assessment, a 
series of stepwise developments were made towards a reference case model for the updated 
assessment for 2014 (Table 10.3 1). A comparison of the recruitment and spawning potential 
trajectories illustrates the effects of the various developments on the estimate of absolute 
abundance over the model period (Figure 10.3 1) and some key reference points are provided in 
Table 10.3 2. 

Table 10.3 1: Summary of the stepwise development model runs undertaken starting with the 2011 
bigeye reference case assessment model leading up to the reference case for the 2014 assessment. 

Run Description 

2011 The 2011 reference case model 

New MFCL As above, but with the new MULTIFAN-CL executable 

New data Updating data to 2012, including many data treatment 
improvements (see Table 3). Also including the 
lognormal bias correction for the estimation of the 
spawner recruitment curve (see Section 10.4). 

New regions Extension to nine region model and expanded fisheries 
definitions. Changes to selectivity and reporting rate 
groupings as appropriate (see Table 4). This model 
applied the region 3 Japanese spliced operational CPUE 
indices to regions 7, and 8. 

New CPUE Replacing the standardized CPUE for regions 3-8 with the 
all-flags operational indices. 

Swap R4 CPUE Replace the all-flags operational CPUE for region 4 with 
the Japanese Operational spliced series. This CPUE series 
was leading to a blowing out in the initial conditions with 
1952 spawning potential of 10-12 times the SBmsy level 
(or alternatively three to four times SB0). 

Ref.Case L2 was fixed at 184cm. 

 

Table 10.3 2: Key management quantities for some selected models spanning the developments from the 
2011 to 2014 reference case models. Note: MSY time periods are different between the first two models 
and the rest. 

Management 
quantity 

Ref.case-2011 New MFCL 
New 
data 

New 
regions 

New 
CPUE 

Swap R4 
CPUE 

Ref.case-2014 

MSY 76,760 75,600 99,040 106,720 111,160 106,800 108,520 

Fcurrent/FMSY 1.46 1.53 1.53 1.47 1.67 1.58 1.57 

SBlatest/SBF=0 0.21 0.20 0.18 0.18 0.15 0.16 0.16 
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Figure 10.3 1: Estimated annual recruitment (top) and spawning potential (bottom) for the WCPO 
obtained from runs undertaken in the stepwise development from the 2011 reference case to the 2014 
reference case. Model runs are as described in Table 10.3 1. 

10.4 Other model developments 

In this section we highlight a small subset of other runs undertaken during the 
assessment. Several of these demonstrate the impact of some MULTIFAN-CL features that were 
used in the changes from the previous assessment (Table 10.4 1) and there is also a model run 
where steepness was estimated. Many of the MULTIFAN-CL features were implemented in the 
step when data were updated in the six region model. To isolate the impact of these we have 
here shown them as one-off changes to the reference case model.  

A comparison of the recruitment and spawning potential trajectories illustrates the 
effects of the various developments on the estimate of absolute abundance over the model 
period (Figure 10.4 1) and some key reference points are provided in Table 10.4 2. 
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Table 10.4 1: Four one of sensitivity analyses to the reference case – three demonstrate the impacts of 
new modelling approaches. 

Run Description 

Ref.Case 2014 reference case 

Final Rdevs When the final six terminal recruitment deviates are 
estimated instead of being fixed at zero. 

Early Rdevs When the first ten years of estimated 
spawner/recruitment estimates are included in the 
estimation of the spawner recruitment relationship. 

Bias correction Bias correction is not applied in the estimation of the 
spawner recruitment relationship – so it is essentially 
based upon median rather than mean recruitment 

Estimate steepness Estimation of steepness using a very diffuse beta prior 

 

Table 10.4 2: Key management quantities for the model runs described in Table 10.4 1. 

Management 
quantity 

Ref.case-2014 
Fix final 

rdevs 

Exclude 
early 
rdevs 

SRR bias 
correction 

Estimate 
steepness 

MSY(mt) 108,520 106,240 112,160 91,000 118,720 

Fcurrent/FMSY 1.57 1.74 1.57 1.62 1.18 

SBlatest/SBF=0 0.16 0.13 0.16 0.16 0.18 
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Figure 10.4 1: Estimated annual recruitment (top) and spawning potential (bottom) for the WCPO 
obtained from runs described in Table 10.4 1. 
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10.5 Doitall script 

#!/bin/sh 
cd $_CONDOR_SCRATCH_DIR 
export PATH=.:$PATH 
export ADTMP1=. 
 
# Apply the recruitment functions changes to the PAR file. 
# $1 Name of the PAR file. 
# $2 New value. 
function recruitmentConstraints { 
    if [ -z $1 ] 
    then 
 echo "Needs filename as argument."; 
 exit 1; 
    elif [ -z $2 ] 
    then 
 echo "Needs new value argument."; 
 exit 1; 
    elif [ -f "$1" ] 
    then 
# Read line per line. 
 while read LINE 
 do 
# Found the desired header. 
     if [ "$LINE" == "# Seasonal growth parameters" ] 
     then 
  echo $LINE >> $1.new; 
    for ((L=1 ; L < 2 ; L++)) 
  do 
                    read LINE; 
# Skip blank or comment line. 
                    if [[ "$LINE" == "#" || "$LINE" == "" ]] 
                    then 
   #echo "Found a matching line "$LINE; 
   L=`expr $L - 1`; 
   echo $LINE >> $1.new; 
                    else 
   #echo "Processing line "$LINE; 
     I=0; 
   for VALUE in $LINE 
   do 
       I=`expr $I + 1`; 
# Change the 29th value. 
       if [ $I -eq 29 ] 
       then 
    echo -n $2" " >> $1.new; 
       else 
    echo -n $VALUE" " >> $1.new ; 
       fi 
   done 
   echo "" >> $1.new; 
      fi 
  done 
# Write line AS IS. 
     else 
  echo $LINE >> $1.new; 
     fi 
 done < $1; 
# Create a backup copie. 
 mv $1 $1.bak; 
# Move temporary file to target file. 
 mv $1.new $1; 
    fi; 
} 
#  ------------------------ 
#  PHASE 0 - create initial par file 
#  ------------------------ 
# 
if [ ! -f 00.par ]; then 
  mfclo64 bet.frq bet.ini 00.par -makepar 
fi 
# 
#  ------------------------ 
#  PHASE 1 - initial par 
#  ------------------------ 
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# 
if [ ! -f 01.par ]; then 
  mfclo64 bet.frq 00.par 01.par -file - <<PHASE1 
#------------------------------------------------------------------------------ 
# Initial phase control option 
# 
  1 32 6          # keep growth parameters fixed 
# 
#------------------------------------------------------------------------------ 
# Recruitment and initial population settings 
# 
  1 149 100       # recruitment deviations penalty 
  1 400 6         # Final six recruitment deviates set to 0 
  2 113 0         # scaling init pop - turned off 
  2 177 1         # use old totpop scaling method 
  2 32 1          # and estimate the totpop parameter 
  2 57 4          # sets no. of recruitments per year to 4 
  2 93 4          # sets no. of recruitments per year to 4 (is this used?) 
  2 94 2 2 95 20  # initial age structure based on Z for 1st 20 periods 
  2 116 70        # default value for rmax in the catch equations 
# 
#------------------------------------------------------------------------------ 
# Likelihood component settings 
# 
  1 141 3         # sets likelihood function for LF data to normal 
  -999 49 20      # divide LF sample sizes by 20 (default=10) 
  -999 50 20      # divide WF sample sizes by 20 (default=10) 
  1 111 4         # sets likelihood function for tags to negative binomial 
# 
#------------------------------------------------------------------------------ 
# 
# Selectivity settings 
# 
  -999 3 37        # all selectivities equal for age class 37 and older 
  -999 26 2        # sets length-dependent selectivity option 
  -999 57 3        # uses cubic spline selectivity 
  -999 61 5        # with 5 nodes for cubic spline 
  -6 57 1          # logistic 
 
  -14 16 2  -14 3 25         # FAD fisheries age-based with splines and set to zero above 25 
quarters  
  -25 16 2  -25 3 25 
  -26 16 2  -26 3 25 
  -31 16 2  -31 3 25 
 
  -16 16 2  -16 3 25 
    
  -15 16 2  -15 3 30         # Free school fisheries 
  -17 16 2  -17 3 30         
  -27 16 2  -27 3 30 
  -32 16 2  -32 3 30 
             
  -18 16 2 -18 3 12          # Forcing selectivity to zero for large fish in the small MISC 
fisheries 
  -24 16 2 -24 3 12 
  -29 16 2 -29 3 12 
  -33 16 2 -33 3 12 
 
  -20 16 2 -20 3 25          # And also for the PL fisheries 
  -21 16 2 -21 3 25 
  -22 16 2 -22 3 25 
  -23 16 2 -23 3 25 
# grouping of fisheries with common selectivity 
  -1 24 1 
  -2 24 1 
  -3 24 2 
  -10 24 2     
  -4 24 3 
  -9 24 3 
  -12 24 3 
  -30 24 3 
  -13 24 3 
  -5 24 4      
  -6 24 5   
  -7 24 6 
  -8 24 7 
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  -11 24 8 
  -28 24 8    #SJH2014 group to fishery 11 in the early phases 
  -14 24 9 
  -25 24 9 
  -26 24 9 
  -31 24 9 
  -16 24 10   #SJH2014 
  -15 24 11 
  -27 24 11 
  -32 24 11 
  -18 24 12 
  -24 24 12 
  -29 24 12  # much smaller fish than other PL 
  -33 24 12 
  -19 24 13 
  -20 24 14  # group JP PS and PL together - strange LF's but with some big fish on occassion 
  -21 24 14 
  -22 24 14 
  -23 24 14 
  -17 24 15  # split it out because the fit is crap 
# 
#------------------------------------------------------------------------------ 
# Catchability settings 
# 
# grouping of fisheries with common catchability 
  -1 29 1 
  -2 29 1 
  -3 29 2 
  -4 29 1 
  -5 29 3 
  -8 29 1 
  -9 29 1 
  -6 29 4 
  -10 29 5 
  -12 29 1 
  -11 29 6 
  -13 29 1 
  -7 29 1 
  -14 29 7 
  -15 29 8 
  -16 29 9 
  -17 29 10 
  -18 29 11 
  -19 29 12 
  -20 29 13 
  -21 29 14 
  -22 29 15 
  -23 29 16 
  -24 29 17 
  -26 29 19 
  -27 29 20 
  -28 29 21 
  -29 29 22 
  -30 29 1   # With LL-ALL9 linked 
  -31 29 23 
  -32 29 24 
  -33 29 25 
  -25 29 18 
  -1 60 1 
  -2 60 1 
  -3 60 2 
  -4 60 1 
  -5 60 3 
  -8 60 1 
  -9 60 1 
  -6 60 4 
  -10 60 5 
  -12 60 1 
  -11 60 6 
  -13 60 1 
  -7 60 1 
  -14 60 7 
  -15 60 8 
  -16 60 9 
  -17 60 10 
  -18 60 11 
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  -19 60 12 
  -20 60 13 
  -21 60 14 
  -22 60 15 
  -23 60 16 
  -24 60 17 
  -26 60 19 
  -27 60 20 
  -28 60 21 
  -29 60 22 
  -30 60 1    # With LL-ALL9 linked 
  -31 60 23 
  -32 60 24 
  -33 60 25 
  -25 60 18 
# 
#------------------------------------------------------------------------------ 
# Tag dynamics settings 
# 
  1 33 90         # maximum tag reporting rate for all fisheries is 0.9 
  2 96 30         # tag pooling at 30 quarters after release so not to have to follow them 
forever 
  -9999 1 1       # sets no. mixing periods for all tag release groups to 1 
  2 198 1         # Estimate tag reporting rates in new tag group / fishery structure 
  -999 43 0       # no longer estimating negative binomial variance 
  -999 44 0 
# 
# grouping of fisheries for tag return data 
  -1 32 1 
  -2 32 2 
  -3 32 3 
  -4 32 4 
  -5 32 5 
  -6 32 6 
  -7 32 7 
  -8 32 8 
  -9 32 9 
  -10 32 10 
  -11 32 11 
  -12 32 12 
  -13 32 13 
  -14 32 14 
  -15 32 14 
  -16 32 15 
  -17 32 15 
  -18 32 16 
  -19 32 17 
  -20 32 18 
  -21 32 19 
  -22 32 20 
  -23 32 20 
  -24 32 21 
  -25 32 22 
  -26 32 23 
  -27 32 23 
  -28 32 24 
  -29 32 25 
  -30 32 26 
  -31 32 27 
  -32 32 27 
  -33 32 28 
# 
#------------------------------------------------------------------------------ 
# Effort deviation settings 
# 
# sets penalties for effort deviations (negative penalties force effort devs 
# to be zero when catch is unknown) 
 -999 13 -3      # to 1 for longline fisheries where effort is standardized and CV's provided 
in frq file 
  -1 13 1 
  -2 13 1 
  -4 13 1 
  -7 13 1 
  -8 13 1 
  -9 13 1 
  -12 13 1 
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  -13 13 1 
  -18 13 3      # to 3 for those fisheries with only effort in last_yr 
  -19 13 3 
  -24 13 3 
  -25 13 3 
  -33 13 3 
## use time varying effort weight for LL fisheries 
 -1 66 1 
 -2 66 1 
 -4 66 1 
 -7 66 1    #just using R3 cpue for now     SJH2014 
 -8 66 1    #just using R3 cpue for now     SJH2014 
 -9 66 1 
 -12 66 1 
 -13 66 1 
# 
#------------------------------------------------------------------------------ 
# Catchability deviation settings 
# 
  -14 15 1 
  -15 15 1 
  -16 15 1 
  -17 15 1 
  -18 15 1       # low penalty for PH.ID MISC. 
  -24 15 1 
  -25 15 1                     
  -26 15 1 
  -27 15 1 
  -31 15 1 
  -32 15 1 
  -33 15 1            #SJH2014 
PHASE1 
fi 
#------------------------------------------------------------------------------ 
# 
# 
#------------------------------------------------------------------------------ 
#   PHASE 2 
#------------------------------------------------------------------------------ 
if [ ! -f 02.par ]; then 
  mfclo64 bet.frq 01.par 02.par -file - <<PHASE2 
  -999 4 4        # possibly not needed 
  -999 21 4       # possibly not needed 
  1 190 1         # write plot-xxx.par.rep 
  1 1 500         # set max. number of function evaluations per phase to 200 
 -999 14 10       # Penalties to stop F blowing out 
  2 35 10         # Set effdev bounds to +- 10 (need to do AFTER phase 1) 
  2 144 100000    # Increase weight on catch likelihood 
PHASE2 
fi 
#------------------------------------------------------------------------------ 
#   PHASE 3 
#------------------------------------------------------------------------------ 
if [ ! -f 03.par ]; then 
  mfclo64 bet.frq 02.par 03.par -file - <<PHASE3 
  2 70 1          # activate parameters and turn on 
  2 71 1          # estimation of temporal changes in recruitment distribution 
  2 178 1         # constraint on regional recruitments to be equal to one each model period 
#SJH2014 
PHASE3 
fi 
#------------------------------------------------------------------------------ 
#   PHASE 4 
#------------------------------------------------------------------------------ 
if [ ! -f 04.par ]; then 
  mfclo64 bet.frq 03.par 04.par -file - <<PHASE4 
  2 68 1          # estimate movement coefficients 
  2 69 1 
PHASE4 
fi 
#------------------------------------------------------------------------------ 
#   PHASE 5 
#------------------------------------------------------------------------------ 
if [ ! -f 05.par ]; then 
  mfclo64 bet.frq 04.par 05.par -file - <<PHASE5 
  -999 27 1       # estimate seasonal catchability for all fisheries 
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  -18 27 0        # except those where 
  -19 27 0        # only annual catches 
  -24 27 0 
  -25 27 0        #SJH2014 
  -29 27 0        #SJH2014 
  -33 27 0        #SJH2014 
PHASE5 
fi 
#------------------------------------------------------------------------------ 
#   PHASE 6 
#------------------------------------------------------------------------------ 
if [ ! -f 06.par ]; then 
  mfclo64 bet.frq 05.par 06.par -file - <<PHASE6 
  -3 10 1         # estimate 
  -5 10 1         # catchability 
  -6 10 1         # for all 
  -10 10 1        # non-std. longline 
  -11 10 1        # fisheries 
  -14 10 1 
  -15 10 1 
  -16 10 1 
  -17 10 1 
#  -18 10 1 
#  -19 10 1 
  -20 10 1 
  -21 10 1 
  -22 10 1 
  -23 10 1 
#  -24 10 1 
#  -25 10 1 
  -26 10 1 
  -27 10 1 
  -28 10 1 
  -29 10 1 
  -31 10 1 
  -32 10 1 
#  -33 10 1 
  -999 23 23      # and do a random-walk step every 23+1 months 
PHASE6 
fi 
#------------------------------------------------------------------------------ 
#   PHASE 7 
#------------------------------------------------------------------------------ 
if [ ! -f 07.par ]; then 
  mfclo64 bet.frq 06.par 07.par -file - <<PHASE7 
  -100000 1 1     # estimate 
  -100000 2 1     # time-invariant 
  -100000 3 1     # distribution 
  -100000 4 1     # of 
  -100000 5 1     # recruitment 
  -100000 6 1 
  -100000 7 1 
  -100000 8 1 
  -100000 9 1 
PHASE7 
fi 
 
#------------------------------------------------------------------------------ 
#   PHASE 8 
#------------------------------------------------------------------------------ 
if [ ! -f 08.par ]; then 
  mfclo64 bet.frq 07.par 08.par -file - <<PHASE8 
  1 14 1          # estimate von Bertalanffy K 
  1 12 1          # and mean length of age 1 
  1 13 0          # and mean length of age n 
  1 1 300         # bit more of a chance 
PHASE8 
fi 
#------------------------------------------------------------------------------ 
#   PHASE 9 
#------------------------------------------------------------------------------ 
if [ ! -f 09.par ]; then 
  mfclo64 bet.frq 08.par 09.par -file - <<PHASE9 
  1 16 1  1 15 1  # estimate length dependent SD 
  1 173 8         # activate independent mean lengths for 1st 8 age classes 
  1 182 10        # penalty weight 
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  1 184 1         # estimate parameters 
  1 1 300         # get better handle on growth as we will fix it in the final phase 
PHASE9 
fi 
 
recruitmentConstraints 09.par 0.8 
#------------------------------------------------------------------------------ 
#   PHASE 10 
#------------------------------------------------------------------------------ 
if [ ! -f 10.par ]; then 
  mfclo64 bet.frq 09.par 10.par -file - <<PHASE10 
  2 145 -1       # use SRR parameters - low penalty for deviation 
  2 146 1        # estimate SRR parameters 
  2 161 1        # lognormal bias correction 
  2 163 0        # use steepness parameterization of B&H SRR 
  1 149 0  # set to 0 for the moment  
  2 147 1  # time period between spawning and recruitment 
  2 148 20       # period for MSY calc - last 20 quarters 
  2 155 4  # but not including last year 
  2 199 204      # start period for SRR estimation is start 1962 
  2 200 6        # end period for SRR estimation is mid 2010 
  -999 55 1      # Do impact analysis 
  2 171 1        # Include SRR-based equilibrium recruitment to compute unfished biomass 
  2 193 1        # Recognises that initial population has some exploitation 
  1 1 3000       # function evaluations for the final phase - TO BEGIN WITH 
  1 50 -3        # convergence criteria 
PHASE10 
fi 

 

10.6 Initialization (ini) file 

# ini version number 
1001 
# number of age classes 
40 
# tag fish rep 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
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0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.593158 0.593158 0.583295 0.583295 0.5 
0.5 0.614833 0.5 0.5 0.5 0.5 0.5 0.699724 0.699724 0.5 0.5 0.5 0.593158 0.593158 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.586 0.586 0.586 0.586 0.764 0.764 0.5 
0.5 0.5 0.5 0.764 0.764 0.586 0.586 0.5 0.5 0.5 0.586 0.586 0.5 
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# tag fish rep group flags 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 38 1 1 1 1 1 1 38 39 40 1 41 41 42 42 43 44 45 46 47 48 49 50 51 51 52 53 54 41 41 55 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 20 1 1 1 1 1 1 20 21 22 1 23 23 24 24 25 26 27 28 29 30 31 32 33 33 34 35 36 23 23 37 
1 1 38 1 1 1 1 1 1 38 39 40 1 41 41 42 42 43 44 45 46 47 48 49 50 51 51 52 53 54 41 41 55 
1 1 38 1 1 1 1 1 1 38 39 40 1 41 41 42 42 43 44 45 46 47 48 49 50 51 51 52 53 54 41 41 55 
1 1 38 1 1 1 1 1 1 38 39 40 1 41 41 42 42 43 44 45 46 47 48 49 50 51 51 52 53 54 41 41 55 
1 1 38 1 1 1 1 1 1 38 39 40 1 41 41 42 42 43 44 45 46 47 48 49 50 51 51 52 53 54 41 41 55 
1 1 38 1 1 1 1 1 1 38 39 40 1 41 41 42 42 43 44 45 46 47 48 49 50 51 51 52 53 54 41 41 55 
1 1 2 1 1 1 1 1 1 2 3 4 1 5 5 6 6 7 8 9 10 11 12 13 14 15 15 16 17 18 5 5 19 
# tag_fish_rep active flags 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
# tag_fish_rep target 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
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50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 80 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 80 50 50 50 
50 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 59.3158 59.3158 58.3295 58.3295 50 50 61.4833 50 50 50 
50 50 69.9724 69.9724 50 50 50 59.3158 59.3158 50 
50 50 50 50 50 50 50 50 50 50 80 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 80 50 50 50 
50 50 
50 50 50 50 50 50 50 50 50 50 80 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 80 50 50 50 
50 50 
50 50 50 50 50 50 50 50 50 50 80 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 80 50 50 50 
50 50 
50 50 50 50 50 50 50 50 50 50 80 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 80 50 50 50 
50 50 
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50 50 50 50 50 50 50 50 50 50 80 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 80 50 50 50 
50 50 
50 50 50 50 50 50 50 50 50 50 50 50 50 58.6 58.6 58.6 58.6 76.4 76.4 50 50 50 50 76.4 76.4 
58.6 58.6 50 50 50 58.6 58.6 50 
# tag_fish_rep penalty 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 89 89 33 33 1 1 2 1 1 1 1 1 163 163 1 1 1 89 89 1 
1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 84 84 84 84 20 20 1 1 1 1 20 20 84 84 1 1 1 84 84 1 
# maturity at age 
0 0 0 0 0 0 0.00400395317140697 0.0090620208084776 0.0180060612167527 0.0330387520958537 
0.0573902985342996 0.0970236867822348 0.159884640300079 0.255818526902294 0.392823118863806 
0.563563999511659 0.737564543664718 0.873349855376351 0.955121228431595 0.992835343697603 1 
0.988646552503548 0.965853785531792 0.937021774261042 0.904720819463276 0.869108374445115 
0.831895989848481 0.793643708326688 0.754806283338424 0.715835214976602 0.677079000946573 
0.638837166188084 0.601362904388722 0.564866117183414 0.529516747617393 0.495448303636788 
0.462761472717955 0.431527738429156 0.401792922120901 0.373580586698095 
# natural mortality (per year) 
0.117807903982688 
# movement map 
1 2 3 4 
# diffusion coffs (per year) 
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0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
0.1 0.1 0.1 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
0.1 0.1 0.1 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
0.1 0.1 0.1 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
0.1 0.1 0.1 
# age_pars 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0.529511970569348 0.344963492569347 0.126636607569348 -0.153068886430652 -0.163617164430652 -
0.163885179605751 -0.163885179605751 -0.163885179605751 -0.163885179605751 -0.156486849146481 
-0.152600947794065 -0.1465977706647 -0.137688051002927 -0.124742019083764 -0.105564246936977 -
0.0779704787956052 -0.0401084957979585 0.00771857746052794 0.0589327039802937 
0.101721152591393 0.125959977021629 0.132366430407387 0.127815281660447 0.117724684936128 
0.105376111973827 0.092101082809219 0.078781111843572 0.0657134265134084 0.0527459978289533 
0.0401450777775319 0.0279429933437338 0.0161670693500227 0.00483956407764969 -
0.00602228380189533 -0.0164061088045999 -0.0263041869763792 -0.0357131347138716 -
0.0446335543122571 -0.0530696422103984 -0.0610287749575805 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
# recruitment distribution by region 
0.05 0.1 0.2 0.35 0.04 0.05 0.15 0.05 0.01 
# The von Bertalanffy parameters 
# Initial  lower bound  upper bound 
# ML1 
21 20 40 
# ML2 
173 140 200 
# K (per year) 
0.075 0 0.3 
# Length-weight parameters 
1.9729e-05 3.0247 
# sv(29) 
0.9 
# Generic SD of length at age 
6.71 3 12 
# Length-dependent SD 
0.7289 -1.5 1.5 
# The number of mean constraints 
0 
 


